Campus Water Sustainability and the Energy-Water Nexus

Presented by

Willa Small Kuh

Director of Planning, Sustainability Practice

Affiliated Engineers

Session Description

Campus engineers, architects and planners are increasingly concerned about the quality, price and availability of water to support campus needs. This session will explore sustainability of campus water needs including how to project water rates, their impact on design choices and best water use conserving practices in infrastructure design. The session will help understand the energy:water nexus effect based on calculating the true value of water and energy conservation measures in existing buildings leading to reduced operating costs related to both resources.

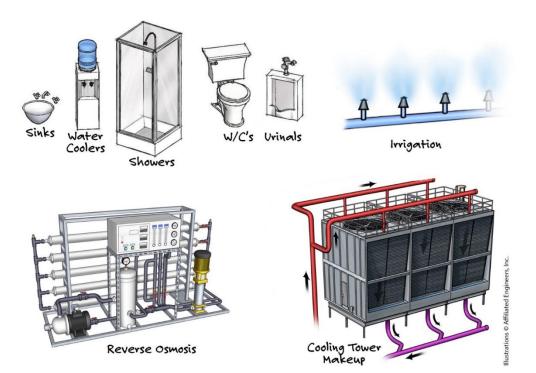
Agenda

Introduction

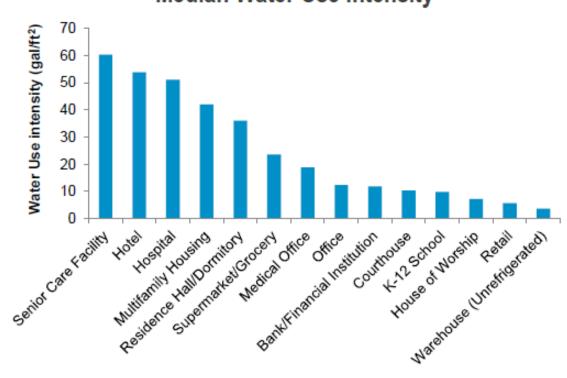
Water Rates, Quality and Availability

Water and Energy

Tools and Techniques


The Planners

From 1,000 to 42,000 students with endowments from \$.27B to \$24B


- Agnes Scott College
- Centennial College
- Emory University
- George Washington University
- Smith College
- Stanford University
- University of British Columbia
- University of California (10 of 13 campuses)
- Yale University

Campus Water Conservation Practices

- Appliances
- Car wash
- Domestic
- Education
- Kitchen and dining
- Landscape and Irrigation
- Laundry
- Leak detection
- Metering
- Mechanical equipment
- Rainwater reuse

Understanding Water Use: First Generation

Median Water Use Intensity

Understanding Water Use: Typical Approach

CLASSIFICATION	WATER USE INTENSITY (Gallons / Sq. Ft. / Year)	TOTAL ANNUAL WATER CONSUMPTION (Gallons)	TOTAL SQ. FT.	NUMBER OF BUILDINGS		
Parking Garage	0.3	428,229	1,640,852	4		
Medium Office	12.5	18,981,702	1,516,567	38		
Small Assembly	12.5	1,071,579	85,480	4		
Small Commercial	12.7	3,490,221	275,899	40		
College/University	13.3	6,268,309	470,770	5		
Arts	13.9	6,398,751	460,641	7		
Large Office	15.6	124,473,203	7,981,183	21		
Large Office w/ mixed use	18.4	178,124,147	9,689,889	11		
Residence Hall/ Dormitory	28.5	11,647,893	409,182	5		
Multifamily	36.4	16,364,381	449,177	6		
Hotel	41.0	83,761,196	2,043,011	7		
Restaurant	134.5	6,935,913	51,566	15		
TOTAL		449,564,908	24,942,813	163		
Table 1: Pittsburgh 2030 District: Downtown Water Baseline Details						

Understanding Water Use: Preferred Approach

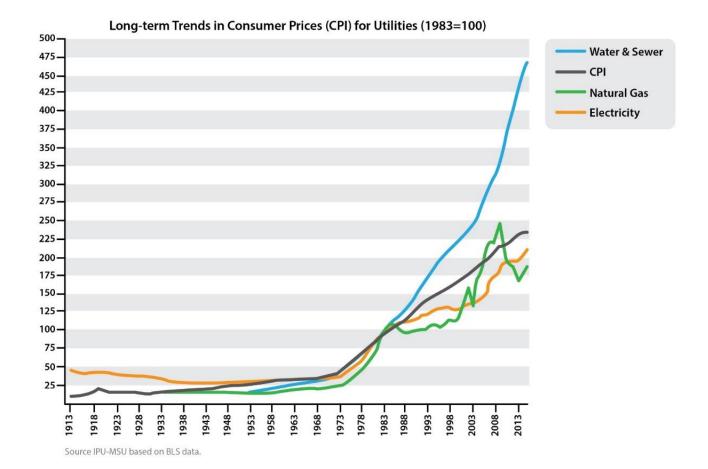
Water Use

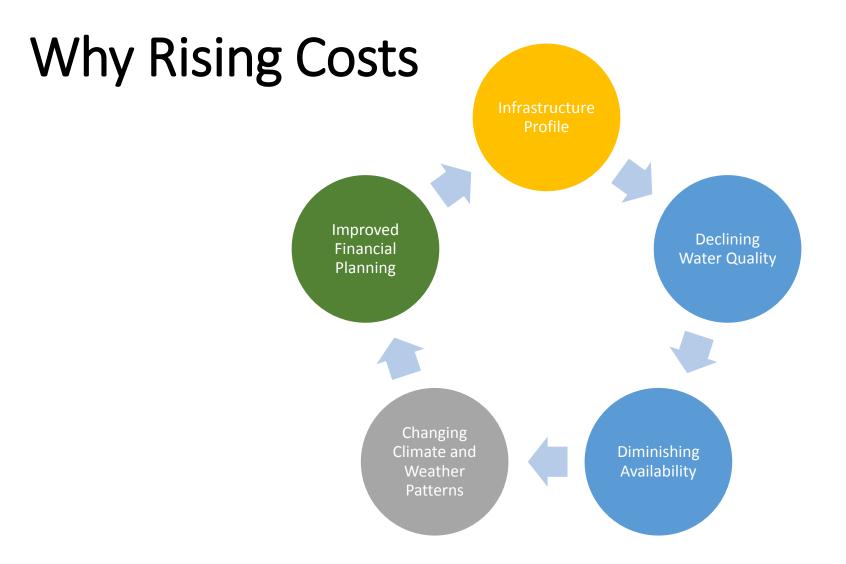
- Direct 40%
- Heating and Cooling 53%
- Irrigation 7%

Direct Water use by Building Type (gallons/gsf)

- Academic/Admin 17
- Residential 27
- Lab 25
- Library/Museum 9

Agenda


Introduction


Water Rates, Quality and Availability

Water and Energy

Tools and Techniques

Water Costs Matter

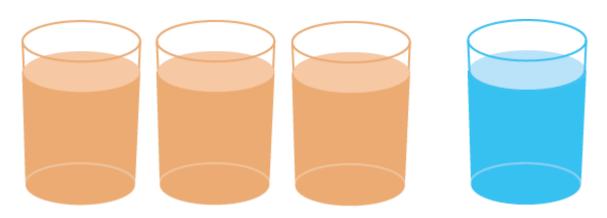
Atlanta	\$29.21	Pittsburgh	\$13.94	Tucson	\$8.90
Seattle	\$25.90	New York	\$13.18	Minneapolis	\$8.80
Boulder	\$24.45	Wash, D.C.	\$12.61	Phoenix	\$821
Cambridge	\$21.30	Anchorage	\$12.25	Evanston	\$8.18
San Francisco	\$18.77	Berkeley	\$11.62	Nashville	\$7.84
Boston	\$18.47	Gainesville, FL	\$10.89	Chicago	\$7.64
Portland, OR	\$18.26	El Paso	\$9.69	Pullman	\$7.58
Oberlin	\$1806	Naperville	\$9.24	Charlottesville	\$6.72
Palo Alto	\$15.64	East Lansing	\$9.17	Тетре	\$5.52
Austin	\$15.46	Hanover	\$9.16	Madison	\$5.31

Atlanta	\$29.21	Pittsburgh	\$13.94	Tucson	\$8.90
Seattle	\$25.90	New York	\$13.18	Minneapolis	\$8.80
Boulder	\$24.45	Wash, D.C.	\$12.61	Phoenix	\$821
Cambridge	\$21.30	Anchorage	\$12.25	Evanston	\$8.18
San Francisco	\$18.77	Berkeley	\$11.62	Nashville	\$7.84
Boston	\$18.47	Gainesville, FL	\$10.89	Chicago	\$7.64
Portland, OR	\$18.26	El Paso	\$9.69	Pullman	\$7.58
Oberlin	\$1806	Naperville	\$9.24	Charlottesville	\$6.72
Palo Alto	\$15.64	East Lansing	\$9.17	Тетре	\$5.52
Austin	\$15.46	Hanover	\$9.16	Madison	\$5.31

Atlanta	\$29.21	Pittsburgh	\$13.94	Tucson	\$8.90
Seattle	\$25.90	New York	\$13.18	Minneapolis	\$8.80
Boulder	\$24.45	Wash, D.C.	\$12.61	Phoenix	\$821
Cambridge	\$21.30	Anchorage	\$12.25	Evanston	\$8.18
San Francisco	\$18.77	Berkeley	\$11.62	Nashville	\$7.84
Boston	\$18.47	Gainesville, FL	\$10.89	Chicago	\$7.64
Portland, OR	\$18.26	El Paso	\$9.69	Pullman	\$7.58
Oberlin	\$1806	Naperville	\$9.24	Charlottesville	\$6.72
Palo Alto	\$15.64	East Lansing	\$9.17	Тетре	\$5.52
Austin	\$15.46	Hanover	\$9.16	Madison	\$5.31

Atlanta	\$29.21	Pittsburgh	\$13.94	Tucson	\$8.90
Seattle	\$25.90	New York	\$13.18	Minneapolis	\$8.80
Boulder	\$24.45	Wash, D.C.	\$12.61	Phoenix	\$821
Cambridge	\$21.30	Anchorage	\$12.25	Evanston	\$8.18
San Francisco	\$18.77	Berkeley	\$11.62	Nashville	\$7.84
Boston	\$18.47	Gainesville, FL	\$10.89	Chicago	\$7.64
Portland, OR	\$18.26	El Paso	\$9.69	Pullman	\$7.58
Oberlin	\$1806	Naperville	\$9.24	Charlottesville	\$6.72
Palo Alto	\$15.64	East Lansing	\$9.17	Тетре	\$5.52
Austin	\$15.46	Hanover	\$9.16	Madison	\$5.31

Agenda


Introduction

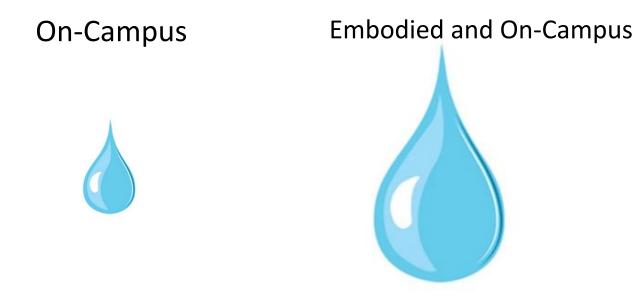
Water Rates, Quality and Availability

Water and Energy

Tools and Techniques

U.S. power plants use three times as much fresh water daily – **143** billion gallons – as is used for public water supplies.

The Energy Footprint of Water Use



Natural Gas 35 gal/kWh¹ Coal 36 gal/kWh1

Nuclear 44 gal/kWh1 Hydroelectric 65 gal/kWh2

Volumes represent high end of consumption ¹Source: Macknick et al. 2011 ²Source: UNESCO-IHE 2011

The Energy Footprint of Water Use

22,672,000 gallons

3,000,000,000 gallons

The Energy Footprint of Water Use

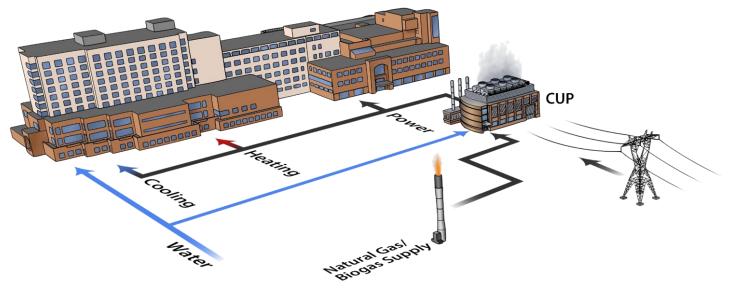
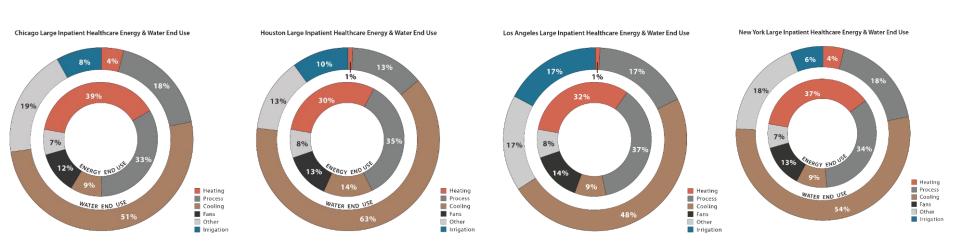
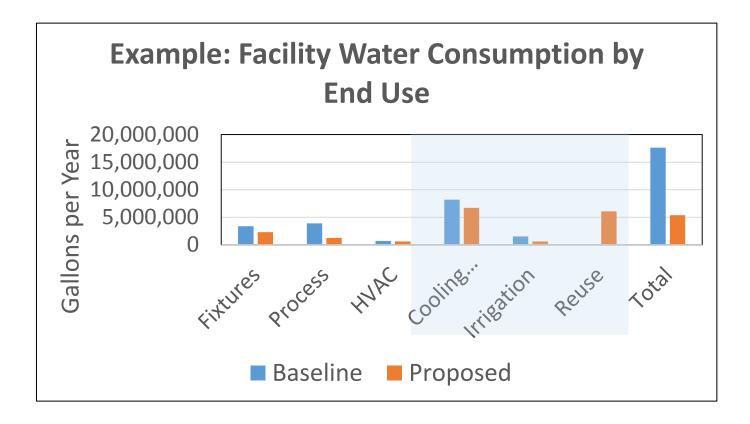
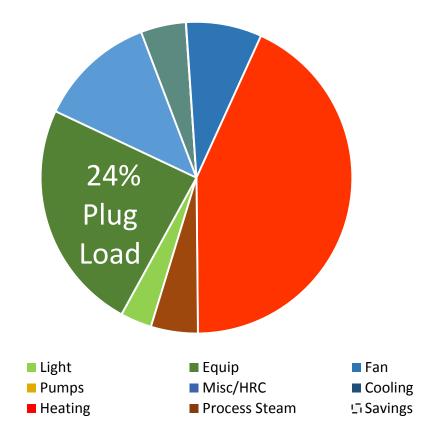
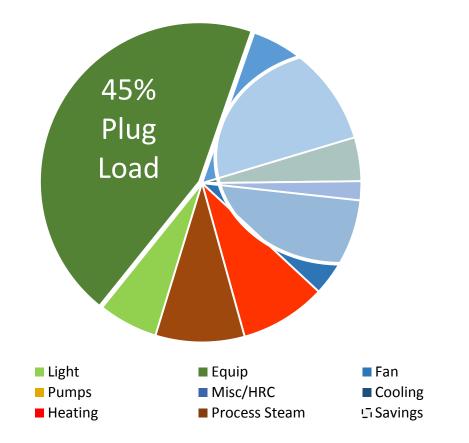




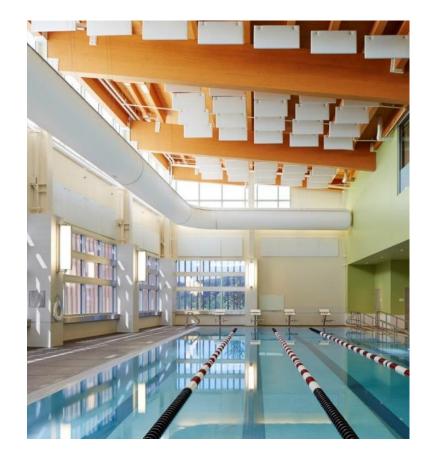
Illustration © Affiliated Engineers, Inc.


Building Energy: Water Relationship


Water Hierarchy Results: Building Scale

Equipment Plug Load, 2005

Equipment Plug Load, 2015


5% - 30% Indirect impact on energy demand

...and, up to 15% of total building water use

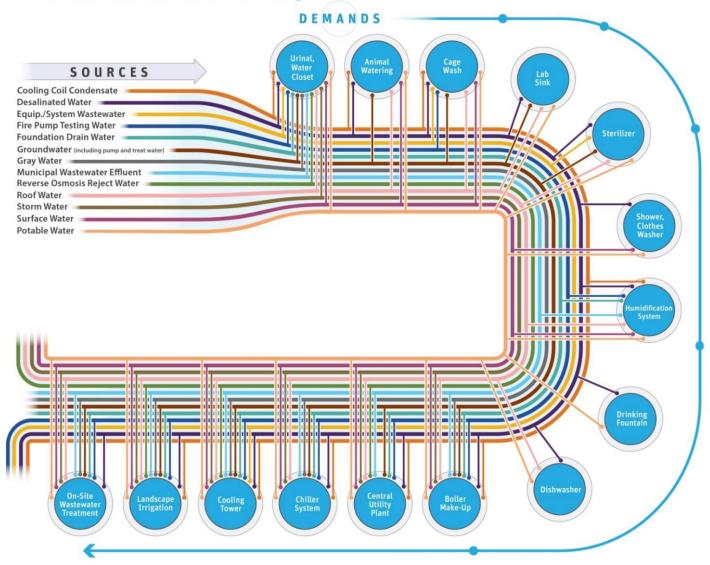
Energy in Water Conservation Measures

Energy savings leveraged by pool cover

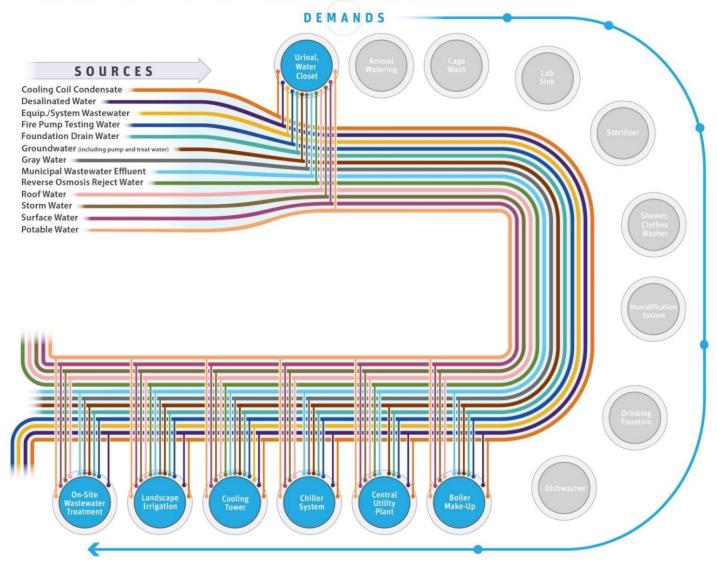
- Reduces air moisture
 - air handling unit efficiency gain of ~24,000 kWh/yr (\$3,500/yr)
- Reduces makeup water demand and steam needed for heat
 - efficiency gain of ~3,000 therms/yr (\$2,100/yr)

Agenda

Introduction


Water Rates, Quality and Availability

Water and Energy


Tools and Techniques

Potential Water Sources for Buildings

Matching Water Demand and Sources: Most Flexible

Water Hierarchy Results: Campus Scale

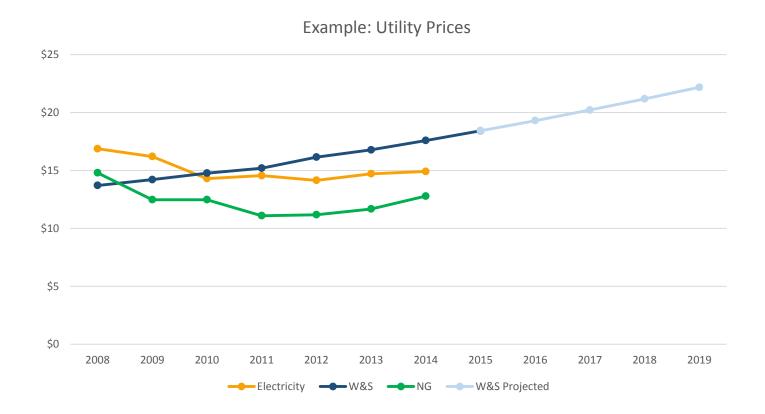
UNC Chapel Hill Utilities

- Reclaimed cooling coil condensate
- Groundwater recovery
- Reclaimed water from city
- Highly efficient chiller plant
- Ponds

Water Hierarchy Results: Campus Scale

Duke University Utilities


- Reclaimed cooling coil condensate
- Rainwater capture from roofs
- Blowdown recovery
- Ponds


Water Hierarchy Results: Campus Scale

Stanford University Utilities

- Stanford Energy Systems Innovations conversion from steam to hot water with building energy demand management investments reduces campus potable water demand by 15%
- Non-potable sources for irrigation
- Advanced metering infrastructure system

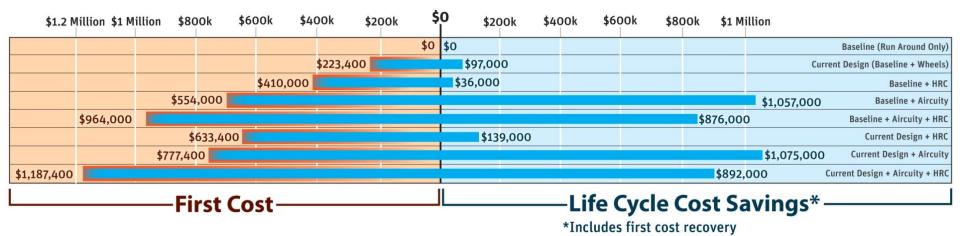
Anticipate Rate Changes

Anticipate Rate Changes

Drivers

- Responsible water management
- Full cost accounting
 - Cost increases trigger conservation activity, drive new rate structuring
- Deferred investments
 - Obvious problems
 - Well-documented problems consent decree to compel investments
- Complex and/or uncertain water rights

Anticipate Rate Changes


Ecova's analysis

- 2008 to 2012 survey of commercial clients
- 27% water/sewer rate increase

Black & Veatch's analysis and projection

- 2001 to 2013
- 6.4% per annum water **cost** increase
- 6.8% per annum sewer **cost** increase
- Predicts 5% to 15% cost increase "every few years"
 Fitch Ratings' projection
- 5% per annum **rate** increase

Test Water and Energy

The Geography of Water Rates

500 Miles apart...

- Seattle, Washington \$22.98/1,000 gal (water and sewer, 2015)
- Nampa, Idaho \$3.85/1,000 gal (water and sewer, 2015)

Test Water and Energy

Example: Selecting the Best Chiller Plant

- Water-Cooled Chiller Plant
 - (3x) 500 ton Daikin WSC centrifugal chiller
 - NPLV kW/ton=0.375 , NPLV COP=9.3
 - Marley NC 8400 Cooling Towers
 - Annual total water-cooled plant COP=7
- Air-Cooled Chiller Plant
 - (4x) 350 ton Daikin PATHFINDER screw chiller
 - IPLV EER=19.2 , IPLV COP=5.6

Test Water and Energy: Energy Analysis

- Whole building shoebox model
- Custom chiller performance curves

ENERGY	Air-Cooled [Total]	Water-Cooled [Total]	Water-Cooled [Chiller]	Water-Cooled [Tower]	Water-Cooled [Pump]	Units
Nampa, ID	778,953	570,238	454,244	10,072	105,922	[kWh]
Seattle, WA	689,488	504,745	402,073	8,915	93,757	[kWh]

- Water-cooled chiller 40% more efficient than total air-cooled chiller
- Total water-cooled plant 25% more efficient than total air-cooled machine
- Water-cooled plant benefits from annual average ccondensor water supply of 67°F

Test Water and Energy: Water Analysis

WATER	Air-Cooled	Water-Cooled	Units	
Nampa, ID	0	2,696,936	[gallons]	
Seattle, WA	0	2,387,185	[gallons]	

Test Water and Energy: Electricity Rates

Nampa, ID → Virtual Rate = 0.061 [\$/kWh]

ENERGY CHARGES:

Peak:

Energy used between six (6:00) a.m. and ten (10:00) p.m., Monday through Saturday, excluding major holidays,* at 6.90c per kWh

Off-peak:

Energy used at all times other than the peak period at 4.63¢ per kWh

DEMAND CHARGES

Peak:

All kW of maximum demand between six (6:00) a.m. and ten (10:00) p.m., Monday through Saturday, excluding major holidays,* at \$1.52 per kW

Off-peak:

All kW of maximum demand in excess of peak maximum demand, at all times other than the peak period, at 0.24 per kW

Minimum Charge: \$16.77 per meter per day

Discounts:

Transformer losses: 1756 + 0.53285 x kW + 0.00002 x kW²+ 0.00527 x kWh Transformer investment: \$0.24 per kW of monthly maximum demand

SECONDARY SERVICE	Summer	Non-summer
Service Charge, per month	\$39.00	\$39.00
Basic Charge, per kW of Basic Load Capacity	\$0.92	\$0.92
Demand Charge, per kW of Billing Demand	\$5.94	\$4.25
On-Peak Demand Charge, per kW of On-Peak Billing Demand	\$1.02	n/a
Energy Charge, per kWh On-Peak Mid-Peak Off-Peak	6.3883¢ 5.0580¢ 4.4890¢	n/a 4.7044¢ 4.1795¢

← Seattle, WA

Virtual Rate = 0.064 [\$/kWh]

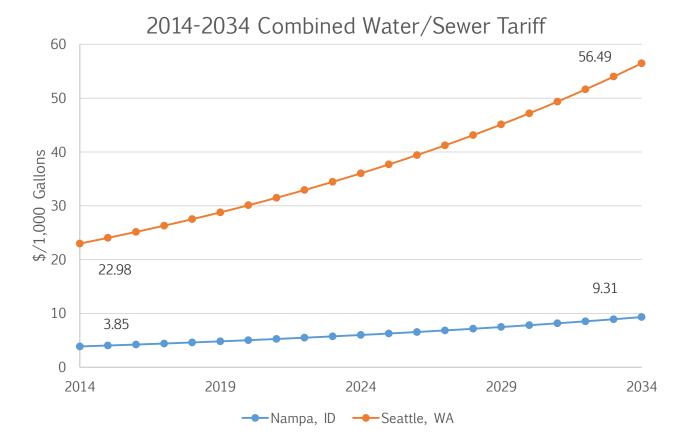
Test Water and Energy: Water Rates

Nampa

- \$0.77/1,000gal [water]
- \$3.08/1,000gal [sewer]
- \$3.85/1,000gal [combined]

Seattle

- \$7.27/1,000gal [water]
- \$15.71/1,000gal [sewer]
- \$22.98/1,000gal [combined]



Escalation Rates:

- Electricity Escalation Rate = 2.18%
- Water/Sewer Escalation Rate (Seattle, WA) = 4.6%
- Water Escalation Rate (Nampa, ID) = 3.7%
- Sewer Escalation Rate (Nampa, ID) = 4.7%

Economic Assumptions:

- 20 year lifecycle
- Water-cooled plant incremental cost = \$97,467
- Discount Rate = 4.1%

Nampa (Year 0)

Air-cooled, elec = 47,438 [\$]

Water-cooled, elec = 34,727 [\$] Water-cooled, water = 2,080 [\$] Water-cooled, total utility = 36,808 [\$]

Water-cooled, elec \$ = 26.8% less than air

Water-cooled, total \$ = 22.4% less than air

Nampa (Year 20)

Air-cooled, elec = 73,055 [\$]

Water-cooled, elec = 53,480 [\$] Water-cooled, water = 4,302 [\$] Water-cooled, total utility = 57,783 [\$]

Water-cooled, elec \$ = 26.8% less than air

Water-cooled, total \$ = 20.9% less than air

Seattle (Year 0)

Air-cooled, elec = 44,403 [\$]

Water-cooled, elec = 32,506 [\$] Water-cooled, water = 18,943 [\$] Water-cooled, total utility = 51,449 [\$]

Water-cooled, elec \$ = 26.7% less than air

Water-cooled, total \$= 15.9% MORE than air

Seattle (Year 20)

Air-cooled, elec = 68,381 [\$]

Water-cooled, elec = 50,059 [\$] Water-cooled, water = 46,568 [\$] Water-cooled, total utility = 96,627 [\$]

Water-cooled, elec \$ = 26.7% less than air

Water-cooled, total \$ = 41.3% MORE than air

Test Water and Energy: NPV

• Nampa

NPV of water-cooled plant = \$112,867 *(excluding water costs)* NPV of water-cooled plant = \$72,900 *(including water costs)*

• Seattle

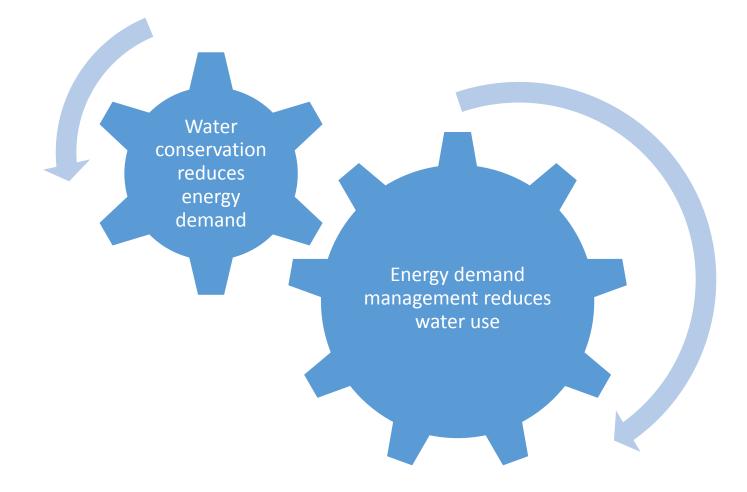
NPV of water-cooled plant = \$99,409 (excluding water costs) NPV of water-cooled plant = \$-299,156 (including water costs)

*NPV > 0 indicates water-cooled option is economically viable

Test Water and Energy: Life-Cycle Cost

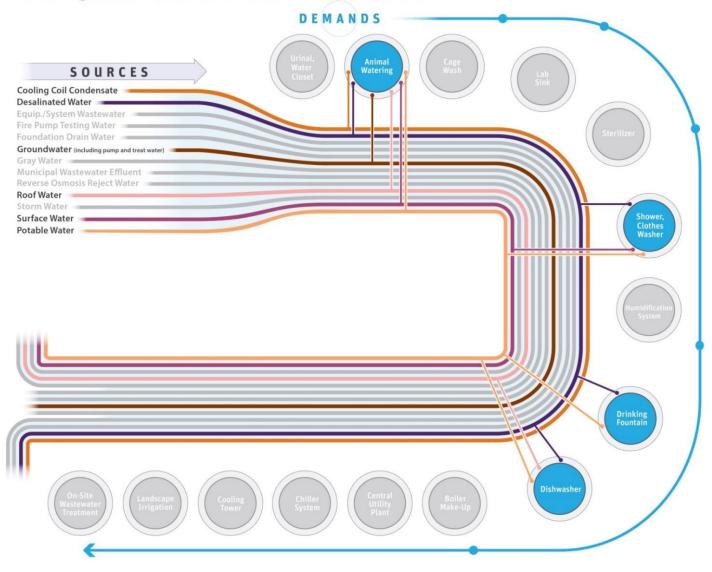
• Nampa

LCC of air-cooled plant = \$2,626,530 (including water costs) LCC of water-cooled plant = **\$2,580,796** (including water costs) -\$45,734 [-1.7%]

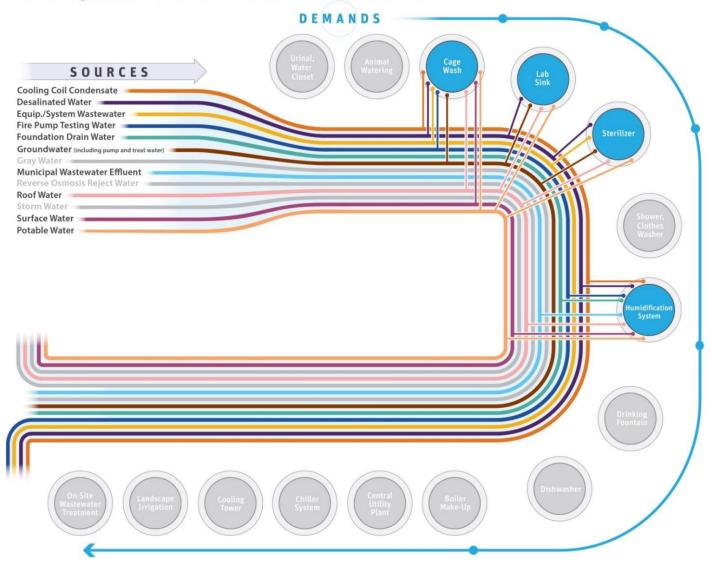

LCC of air-cooled plant = \$2,626,530 (excluding water costs) LCC of water-cooled plant = **\$2,552,773** (excluding water costs)-\$73,757 [-2.8%]

• Seattle

LCC of air-cooled plant = **\$2,585,643** (including water costs) LCC of water-cooled plant = **\$2,778,022** (including water costs) +\$192,379 [+7.4%]


LCC of air-cooled plant = \$2,585,643 (excluding water costs) LCC of water-cooled plant = **\$2,522,842** (excluding water costs)-\$62,801[-2.4%]

Conservation Matters



END

Matching Water Demand and Sources: Least Flexible

Matching Water Demand and Sources: More Flexible

