

PERFORMANCE EXCELLENCE IN ELECTRICITY RENEWAL

THE UNIVERSITY OF

TEXAS

AT AUSTIN

WHAT STARTS HERE CHANGES THE WORLD

PEER and LEED

- → Through LEED, <u>USGBC created a common language</u>, <u>standard</u>, <u>and framework</u> for advancing knowledge, technology and innovation in sustainable buildings
- → We now aim to do the same in the power and energy delivery sector with PEER

Performance Excellence in Electricity Renewal TM

LEED

CHP

Four critical categories of power system performance

RELIABILITY, POWER QUALITY AND SAFETY

ENERGY EFFICIENCY AND ENVIRONMENT

OPERATIONAL EFFECTIVENESS

PEER is a learning system and continuous improvement process for designing and operating sustainable energy delievry systems

CUSTOMER ACTION

SUSTAINABLE ENERGY DELIVERY FRAMEWORK

MICROGRID ARCHITECTURE

PRIVATE MICROGRID/RESILENT FACILITY

Technology Suite

Total CO2 emissions can approach 300 lb./MWh vs. state/regional average of about ~ 1,000 lb./MWh (with methane leakage)

% Utilization

SYSTEM ENERGY EFFICIENCY OR INDEX (SEE)

SEE =

Metered Load, MMBtu

Total Fuel Consumed, MMBtu

Performance Metric	Base Case	Cogen, 50%	District Energy	UT Austin 100%
Efficiency Gen	NA	52%/6.6	61%/5.6	46%/7.4
Electricity SEI, MMBtu/MWh	10.1	8.5	7.8	7.4
Cooling, kW/ton	1.3	1.3	1.0	0.75
SEE %	59%	68%	77%	86%
SEE Index	1.7	1.5	1.3	1.15

SEE Index = 1 / SEE

ENERGY EFFICIENCY AND ENVIRONMENT

Criteria	Metric/Basis	Max Points	UT Austin Points
CORE		100	68
Source Energy Intensity	7.4 MMBtu/MWh	50	35
CO2 Intensity	1,130lb./MWh	20	13
NOx Intensity	1.4 lb./MWh	10	0.0
SO2 Intensity	0 lb./MWh	10	10.0
Water Consumption	73 gal/MWh	5	5.0
Solid Waste Recycled	100%	5	5.0
BONUS		15 Max	8.0
Renewable Energy Credits	0.0%	10	0.0
District Energy	Checklist	2	2.0
Local Renewables	0.0%	2	0.0
Cogeneration / CHP	100.0%	2	2.0
Environmental Impacts	Checklist	5	4.4
Innovations		5	0
Subtotal		100	76

SAFETY, RELIABILITY, AND POWER QUALITY

Criteria	Methodology	Max Points	UT Austin Points
CORE		100	67
SAIDI – Downtime in minutes	9.7 minutes	1	1.0
SAIFI - Frequency	0.1 interruptions	1	1.0
Availability - Uptime	0.99998%	23	23.0
Damage and Exposure Prevention	Checklist	5	3.3
Alternative Sources of Supply	Site generation	5	5.0
Distribution Redundancy and Automated Restoration	44%	10	5.9
Island Capability	Checklist	20	20.0
Backup Power for Critical Loads	1%	10	0.1
Resiliency through Recovery	100%	5	5.0
Risk Mitigation	Checklist	20	3.0
Bonus		15 max	13
Power Quality Measurement	50%	5	3.7
Capabilities for Power Quality	Checklist	5	3.9
Momentary Outages 0.06 interruptions		10	3.0
Innovations		5	2.3
Subtotal		100	80

OPERATIONAL EFFECTIVENESS

Criteria	Metric/Basis	Max Points	UT Austin Points
CORE		100	63.0
Load Duration Curve	0%	20	10.0
Waste Identification and Elimination	Checklist	20	10.0
Failure Identification and Elimination	Checklist	20	3.0
Demand Response Capability	223%	20	20.0
Value Determination	\$22 million	20	20
Innovations		15 max	10.0
System Energy Efficiency	87%	3	3.0
Gap Determination	\$3,000,000	14	5
Innovations	Checklist	5	2.0
Subtotal		100	73.0

CUSTOMER ENGAGEMENT

Criteria	Max Points	UT Austin Points
Prerequisites		
Advanced Metering Infrastructure	Pass/Fail	Pass
Data Privacy/Cyber Security	Pass/Fail	Pass
Customer Engagement Programs	Pass/Fail	Pass
CORE	100	62.5
Local Renewable Capability	25	0.0
Local Cleaner Power Capability	30	30.0
Local Demand Response Capability	30	30.0
Access to Dynamic Pricing	5	0.0
Energy Management Systems	5	2.5
Electricity Supply Choice	5	0.0
Bonus	12	12.0
Innovations	12	12.0
Subtotal	100	75
Total	400	304/76%

CLOSING THE POWER SUPPLY GAP

	.		Upper				
	Baseline	Current	Limit				Upoper Limit
Reliability and Power Quality			100%				
				95%	п	-	Electricity Cost OC, \$
SAIDI	60.7	9.67	0.0	90%	п	3,000,000	Electricity Energy Efficiency OC, \$
SAIFI	0.77	0.10	0.00	85%	п	-	Distribution OC, \$
ASAI	0.99988	0.99998	1.00000	80%		-	Demand Charge Reduction OC, \$
				75%		-	Ancillary Service OC, \$
Environmental and Efficiency			70%			TOTAL GAP, \$	
				65%			\$3,000,000
SEI (mmBTU/MWh)	9.20	7.40	5.50	60%			
CO2I (lb/MWh)	1,560	1,130	750			Useage =	360,000 MWh
NOxI (lb/MWh)	1.10	1.40	0.20	55%		Peak =	60 MW
SO2I (lb/MWh)	2.20	0.00	0.00	50%			
Water (gal/MWh)	330	75	50	45% 40%			TOTAL VALUE, \$
Waste (% Recycle)	43	100	100	35%			\$22,240,000
				30%			
Operations and C	ustomer	•				6,000,000	Electricity Cost Savings
				25%		3,000,000	Electricity Energy Efficiency Savings
Demand % of Peak	71%	154%	0%	20%		4,000,000	Chiller System Efficiency
Demand Response %	0%	446%	446%	15%		9,000,000	Demand Charge Reduction Savings
Cooling, kW/ton	1.2	0.8	0.7	10% 5%		240,000	Reliability and PQ Savings
Local Power %	0.0%	100.0%	100.0%	0%		-	Ancillary Service Savings
Energy Cost (000)	43,000	21,000	15,000				Baseline

USING PEER TOOLS TO IMPROVE PRIVATE MICROGRIDS

IMPROVEMENT PLAN