

Energy Collaborate. Connect. Complete.

Piping System Integrity

2016 IDEA Campus Workshop Monte K. Engelkemier, P.E. John Molnar-Penn State University

Agenda

- What is a Piping System Integrity?
- Quick Review of the O&M B31.1 Chapter VII
- Condition Assessment

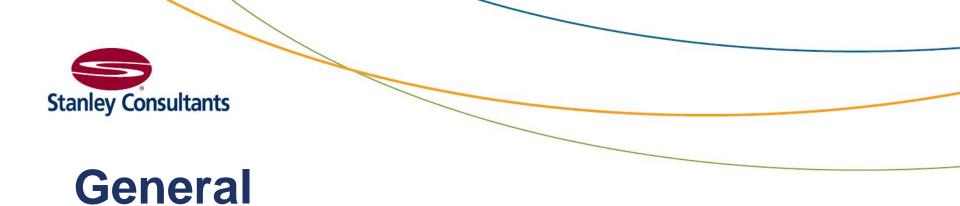
What is a Piping System?

- "...piping systems as covered by this Code apply to all piping and their component parts..." ASME B31.1 paragraph 100.1.2
- What are their "component parts"?
 - Pipe, Valves, Flanges, Insulation, Instruments
 - Pipe Supports
 - Surrounding Structure

What is a Piping System Integrity?

 Piping System Integrity is the practice of keeping the condition (Piping System) of being free from damage or defect, or an unimpaired condition

Energy COLLABORATE. CONNECT. COMPLETE.


Goals of B31.1 O&M **"Thou Shall Know the Condition of Thy Condition**" -Piping Gods (Before We Knew it was Round with a Hole)

Goals of B31.1 Chapter VII on O&M

- Knowledge/Information
- Code Reference
- Ultimately:

Information Gained = Money \$aved

- Managing safe pipe service begins with the initial project concept and continues throughout the service life of the system (typically after we are all retired)
- Any new failure reinforces this protocol

OPERATION AND MAINTENANCE PROCEDURES

• The Operating Company shall be responsible for the safe operation and maintenance of their power piping.


Chapter VII & Nonmandatory Appendix V: Operation & Maintenance

- ASME B31.1 addresses the operation and maintenance of power piping 2007 edition.
- The inspection and evaluations methods are acknowledged, but not detailed.
- Wanted Owners to have a plan to address
 O&M. It didn't need to be a great plan, but something was better than nothing.

Other ASME Codes with O&M Requirements

- B31.4 2002 Pipeline Transportation Systems For Liquid Hydrocarbons and Other Liquids (Chapter VII)
- B31.8 2003 Gas Transmission And Distribution Systems (Chapter V)
- B31.11 2002 Slurry Transportation Piping Systems (Chapter VII)
- High Pressure System HPS 2003 (Section 5000)

Condition Assessment

CONDITION ASSESSMENT

- Why?
- Who?
- Where?
- When?
- What?

CONDITION ASSESSMENT: The Why

- As discussed, Code recommends piping system be maintained to ensure safe operation of the piping
- Money \$aved through proper maintenance

CONDITION ASSESSMENT: The Who

- The Owner, Plant Personnel, and 3rd Party Consultant can preform routine/periodic assessments
- The Owner and Plant Personnel should be vigilant daily to catalog any item out of the ordinary.

CONDITION ASSESSMENT: The When

- A condition assessment shall be performed periodically based on condition.
- What is a good period?
 - 3 Years
 - 5 Years
 - 10 Years
 - Weekly?

CONDITION ASSESSMENT: The Where

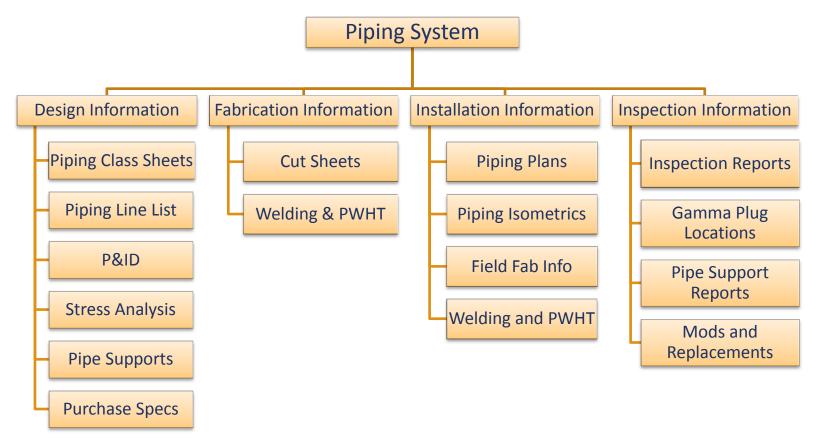
- Obviously any where the piping goes
- The surroundings of the piping too

CONDITION ASSESSMENT: The What

- Besides the piping and components?
- The records

RECORDS

 The condition assessment reports and any reference documents, such as procedures required by ASME B31.1 paragraph 139, drawings and reports, shall be maintained and accessible for the life of the plant.



Setting Up the Record Program

- Collect the documents, not all are needed, but try your best because it will be critical in the long run
- Initial Walkdown, typically when Hot
- Follow-up with a Cold Walkdown, try to complete within 12-18 months

Setting Up the Record Program: Typical Documents

Setting Up the Program

- System Piping Drawings (Plans/Sections or Isometrics) showing
 - Support Information
 - Expansion Joints
 - Shop and Field Weld Locations
 - Gamma Plug Locations (x-rays)

Initial Walkdown

- Interview constructor (if possible), plant personnel for any updates or revisions, etc.
- Interview operations for any problems noted
- Make sure all commissioning is complete and temporary pipe/supports removed
- Make sure all springs are unlocked (I found a locked spring in a operating university plant)
- Make sure water lines are filled

Initial Walkdown

- Typically completed immediately, so most likely the system is energized
- Items Checked
 - Isometrics match actual piping
 - Pipe supports match design drawings
 - Guide lugs
 - Orientation
 - Structural Deficiencies
- Take Photos to document work

Follow-up Walkdowns

- Initial Walkdown, typically when energized
- Follow-up with a Cold Walkdown (unenergized), try to complete within 12-24 months
- Anytime the system is walkdown for whatever reason, be vigilant in noting irregularities and possible issues

Reports

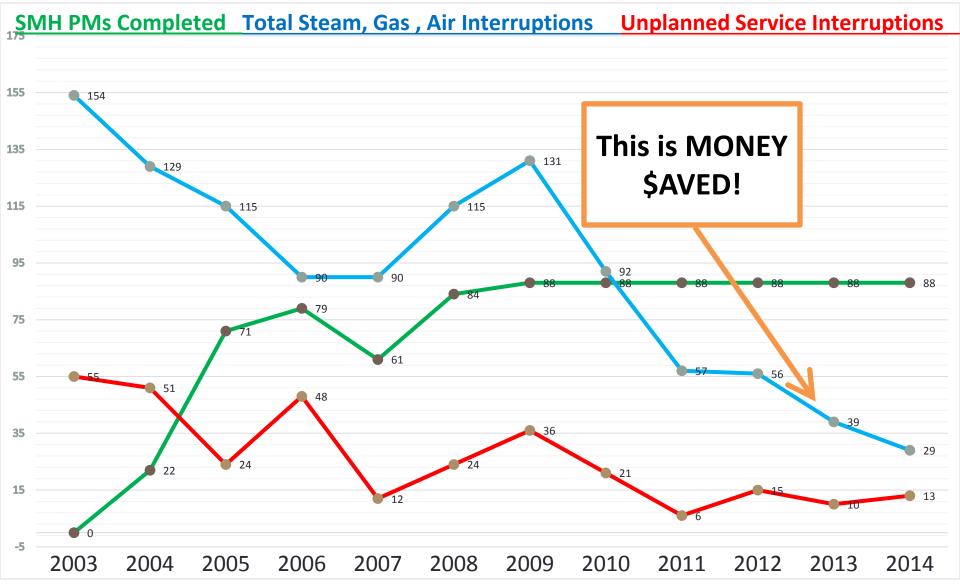
- Develop a report to capture all major walkdowns
- Include in that report any issues noted since last major walkdown
- Create an Executive Summary highlighting the more significant findings
- Generate a Punch List of all problems noted with recommendations

Setting Up the Program

- Initial Walkdown, typically when Hot
- Follow-up with a Cold Walkdown, try to complete within 12-18 months

Follow-Up Actions By the Plant

- Plants are responsible for all action taken:
 - Decides which repairs/adjustment to make
 - Decides when the actions should be done
- May need to rely on Contractors to develop a SOW based on punch list


Example of O&M Procedures from Penn State University

Goal: Inspect and PM one half of the SMHs yearly

Task	SMH PM Job Plan
10	Notify Base of location of open manhole.
20	Set up tri-pod.
30	Fill out Confined Space Entry Permit.
40	Use the attached photos to apply the condition grades to the concrete.
45	Use your best judgment to apply the condition grades to the unit components
50	1 = BAD CONDITION, See Long Description for recommend actions
60	2 = POOR CONDITION, See Long Description for recommended actions.
70	3 = FAIR CONDITION, Continue to monitor using current PM frequency
75	4 = GOOD CONDITION, Continue to monitor using current PM frequency
80	Check entrance lid and vent lidGrade
90	Check ladder and rungsGrade
100	Pipe insulation conditionGrade
110	Check steel supports & anchorsGrade
120	Check roofGrade
130	Check wallsGrade
140	Check floorGrade
150	Check concrete anchorsGrade
160	Check sump pitGrade
162	Lubricate valves using Hi temp grease
165	Operate Valves Create CM for Valves that will not operate or in need of repaired
168	Pack Joint if leaking
170	Steam Expansion JointsGrade
171	Compressed Air PipingGrade
173	Condensate Piping Grade
174	Condensate PipingGrade
180	Contains ASBESTOS? Yes No
190	Clean manhole interior
200	Verify manhole drawing
210	Verify equipment list
220 230	Secure manhole Notify Base that hole is secure
230	
240	Does equipment need Corrective Maintenance? Yes No If Yes, describe work needed
260	
270	Complete PM Work Order

How PM inspections improved System Operations

Steps to reduce and predict failures and maintenance costs

- List all failures to see if there is a common point
- Reduce failure points by using other material, different fittings
- Changing piping configuration
- To collect this information we cataloged the entire system

System Asset ID Format

GIS Node to Node ID Format

Section of Pipe		Steam Man Hole # or Building SMH 120			то то		Hole # or Building MH 121			
Field 1 Field 2 Field 3		Field 3		Field 4		Field 5		Field 6		
System	-	Pipe	-	Size	-	Instillation S	tyle -	Grade	-	Year
Example										
н	-	S	-	10	-	w	-	2	-	1970

_	Abbr	System	_	Abbr	Pipe		Inchs		Abbr	Insulation Style	-	Abbr	Details		
	L	LPS Steam	-	s	Steel Sch 40	-	2	-	SE	Steel Epoxy Conduit	-	1	Several repairs made in the pass 5 years	-	
	Н	HPS Steam	-	F	Fibercast	-	4	-	SH	Steel HDPE Coated	-	2	Single repair made in the pass 10 years	-	Year Line was installed
	С	Condensate	-	В	Bond Strand		5	-	F	Fiberglass Conduit	-	3	No repair made Line installed in pass 25-50 years	-	
	Α	Air	-	Р	Plastic		6	-	w	White Power Dirtherm	-	4	Line installed in pass 10-25 years	-	
	G	Gas	-				8	-	v	Vault	-				
							10	-	т	Walk Tunnel					
							12	-	Ν	No Insulation					
						[14								

GIS Information Form

Nod	Node to Node		Pipe	Size	Install Style	Grade
SMH	SMH					
161	176	Н	S	6	SH	5
		С	F	3	Ν	5
		А	F	2	Ν	5
SMH	SMH					
176	175	Н	S	6	SH	5
		С	F	4	Ν	5
		А	F	2	Ν	5
SMH	Building					
175	Palmer Museum	Н	S	6	SH	4
		С	В	2 1/2	N	4
		Α	F	1	N	4
SMH	SMH					
176	159	Н	S	6	SH	5
		С	F	4	N	5
		А	F	2	N	5
SMH	Building					
159	Stuckman	Н	S	4	SH	5
		С	F	2	N	5
		А	F	2	N	5
SMH	SMH					
159	158	Н	S	6	SH	5
		С	F	3	N	5
		А	F	2	N	5

Identify	□ ×	LAYER
Identify		LINE_TYPE
Identify from:	<top-most layer=""></top-most>	DATE_INSTA
· .	<top-most layer=""></top-most>	DATE_REPAI
STEAM LINES		HPS_SIZE
C-STEAM-LI	NE	HPS_INSULA
		HPS_GRADE
		LPS_SIZE
		LPS_INSULAT
		LPS_GRADE
		CON_SIZE
		CON_PIPE
		CON_INSULA
		CON_GRADE
		AIR_SIZE
	\left\left\left\left\left\left\left\left	AIR_PIPE
Location: 1,93	7,853.765 232,668.780 Feet	AIR_INSULAT
	.,	AIR_GRADE
Field	Value	HPS_AB
OBJECTID	406	LPS_AB
Shape	Polyline	CON_AB
LAYER	C-STEAM-LINE	AIR_AB
LINE_TYPE	HPS-CON	COMMENTS
DATE_INSTALLED	<null></null>	SUBTYPE
DATE_REPAIRED	<null></null>	EDIT_SUBTYR
HPS_SIZE	10	STEAM_ID
HPS_INSULATION	W	BUILDING
HPS_GRADE	4	SHAPE_Leng
LPS_SIZE	<null></null>	GLOBALID
LPS_INSULATION	<null></null>	
LPS_GRADE	<null></null>	
CON_SIZE	6	
CON_PIPE	FRP-B	Identified 1 fe
CON INSULATION	N	Identified 1 to

LAYER	C-STEAM-LINE
LINE_TYPE	HPS-CON
DATE_INSTALLED	<null></null>
DATE_REPAIRED	<null></null>
HPS_SIZE	10
HPS_INSULATION	W
HPS_GRADE	4
LPS_SIZE	<null></null>
LPS_INSULATION	<null></null>
LPS_GRADE	<null></null>
CON_SIZE	6
CON_PIPE	FRP-B
CON_INSULATION	N
CON_GRADE	2
AIR_SIZE	4
AIR_PIPE	В
AIR_INSULATION	N
AIR_GRADE	4
HPS_AB	<null></null>
LPS_AB	<null></null>
CON_AB	<null></null>
AIR_AB	<null></null>
COMMENTS	_Book_4"Air
SUBTYPE	1
EDIT_SUBTYPE	Distribution Main
STEAM_ID	MH119-MH120
BUILDING	<null></null>
SHAPE_Length	154.220321
GLOBALID	{3B700C18-BB92-4D6F-ABA3-A0E0762138D8}
Identified 1 feature	

Steam Line Condition Report

of grade 1 & 2 sections of Low Pressure Steam (LPS) that are under sidewalks or within 2 feet of steps:

- 1. LPS, 2 in, W, Grade 2, between Spruce and Pine Cottage
- 2. LPS, 3 in, W, Grade 1, between Pine Cottage and Ritenour
- 3. LPS, 3 in, F, Grade 1, from MH 225 to Engineering Services
- 4. LPS, 4 in, W, Grade 2, Ihlseng Bldg.
- 5. LPS, 4 in, W, Grade 1, Weaver Bldg.
- 6. LPS, 5 in, W, Grade 2, Fenske Lab
- 7. LPS, 5 in, SE, Grade 2, MH 195 to MH 217 (Carpenter Bldg.)
- 8. LPS, 5 in, W, Grade 2, Henderson Bldg.
- 9. LPS, 6 in, W, Grade 2, Pond Lab
- 10.LPS, 6 in, W, Grade 2, MH 11 to Steidle
- 11.LPS, 6 in, SE, Grade 2, MH 71 to Rec Hall

SMH Condition Report

							1			
Conditio	on Grading System									
0	None installed									
1	Bad Condition, Action need	ed with i	n 1 year							
2	Poor Condition, Schedule fo	or replace	ement wit	<u>th in 1-5 ye</u> :	ars, Crea	te CM to re	evaluate v	<u>with in 1 እ</u>	<u>rear</u>	
3	Fair Condition, Plan for repla	<u>acement</u>	<u>t next 5-1(</u>	<u>0 Years</u>						
4	Good Condition, Life expec	<u>stancy 10</u>	<u>)-20 year</u> :	<u>S_</u>						
5	Excellent Condition, Life ex									
SMH #	Location	Walls	Roof	Concrete Anchors	Steel Support	Expansion Joints	Air Pipe	Steam Pipe	Cond Pipe	Insulation
6	South of Foundry	1	1	0	0	4	0	4	0	4
78	East of Ihseng	1	1	0	2	4	2	4	2	4
241	West of Greenburg	1	1	2	2	4	2	4	3	3
59	SE of Pond Lab	2	1	0	0	4	3	3	3	1
7	South of Foundry	1	2	0	0	0	4	4	4	4
219	South of Business Admin	2	2	0	0	0	4	4	4	4
80	NE of Ihlseng	3	3	0	1	0	3	4	3	4
105	NE of Parking Terrace	4	3	0	2	0	4	4	4	4
246	West of Beaver Stadium	4	3	4	4	4	3	4	4	4
1										

Steam Distribution 5 Year Replacement Plan

Low Pressure Steam, in White Powder with Grade 1 or 2: Sections that are under steps or sidewalks

Line Details & Location	Notes	Length of replacement	Cost HDPE 750/FT
LPS, 5 in, W, Grade 2, Henderson Bldg.	Will continue to monitor	170	127500
LPS, 12in, W, Grade 1, MH 9- MH 11	Request for funding is in	345	258750
LPS, 3 in, F, Grade 1, from MH 225 to Engineering Services	Request for funding is in	400	300000
LPS, 2 in, W, Grade 2, between Spruce and Pine Cottage	Request in for Design	60	45000
LPS, 3 in, W, Grade 1, between Pine Cottage and Ritenour	Request in for Design	20	15000
LPS, 4 in, W, Grade 2, Ihlseng Bldg.	Heating system only. Will continue to monitor	150	112500

Line Replacement Estimated Cost 858,750

Gas Line Replacement Details & Location	Notes	Length of replacement	
MM-WA Electric Engineering West section Gas line 2" steel	Has been repaired 3 times in last 2 years	750	37500
SMH Rebuilds Details Location	Notes	Job Details	Cost/Rebuild
SMH 6 South Of Foundry	Could AB After line is run in Reber North	Replace Walls & Lid	80,000
SMH 7 South of Foundry	Could AB After line is run in Reber North	Replace Walls & Lid	80,000
SMH 216 East of IM Building	Steel Top needs replaced	Project Request in	80,000
SMH 78 East of Ihseng	Walls and Lid Bad	Line also needs replaced	80,000
SMH 241 West of Greenburg	Walls and Lid Bad	Replace Walls & Lid	80,000
SMH 59 South of Pond Lab.	Lid only has 1 Access	Needs new Lid	30,000
		SMH Concrete work	430,000
		Gas Line Replacements	37,500
		Line replacements	858,750
	Steam Distribution 5 Veer D	ale coment Estimate Cost	1 226 250

Steam Distribution 5 Year Replacement Estimate Cost 1,326,250

Conclusions

- The sooner problems are discovered and resolved, the less likely the problems will become major issues
- Long term Owner commitment to the program will help assure safe and reliable operation

Conclusions

- Walkdown data can be used to track the piping system over the long term
- Highlight changes that indicate long term problems

Best of all \$AVE MONEY

Energy Collaborate. Connect. Complete.

Thank-you! Questions??? Contact Information: Monte K. Engelkemier, P.E. engelkemierm@stanleygroup.com 563-264-6641 work