

Suggestion for New District Heating System Usage Tariff Assessment by Exergy

June 28, 2017

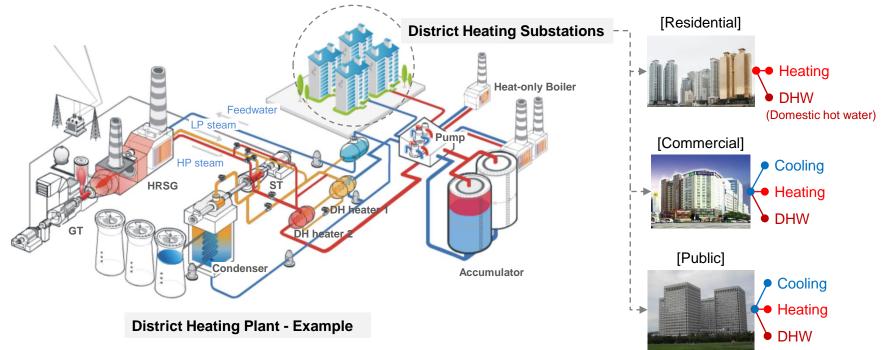
Junghwan Moon

Principal Researcher

Samsung C&T

Contents

- 1. Introduction
- 2. Design of District Heating Substation and Tariff Structure
- 3. New Heat Tariff Assessment
- 4. Modeling Approach
- 5. Results
- 6. Conclusion


District heating issues

- Current district heating system usage tariff is based on enthalpy (flow rate × temperature difference). While cost assessment is simple, it is not qualitatively evaluated.
- Differences between supply and return temperatures of water are the same, the users pay equal rate. However, from a thermo-economic point of view they are different.
- Return temperature varies greatly among users. High return temperatures create low generation efficiency and high pumping power in plant.
- Rather than applying only quantitative factors, the proposed concept requires both quantitative and qualitative assessment.
- The objective of this research is to suggest the new concept of tariff system by exergy.

1. Introduction - District heating system in Korea

Extensive use of substations for all types of applications

Source : http://www.gspower.co.kr/Cyber_Publicity/CyberPH_Tour/CyberPH_Tour.asp

2. Design of substation and tariff structure

Typical substation design (1-stage)

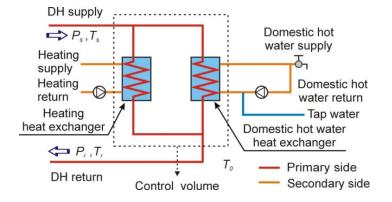


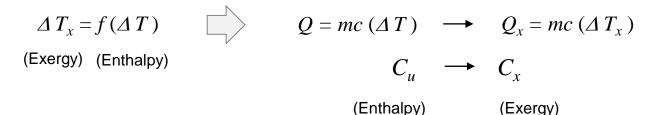
Table 1 Primary design condition of substation in Korea

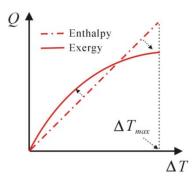
Туре			Temperature[°C]		Pressure
			Supply	Return	[MPa(bar)]
Heating	Radiant		115	50	4.0(40)
Heating	Convection/AHU			55	
	1-stage		75	35	
Domestic Hot Water	2-stage Reheat (≥150 Mcal/h) Preheat	Reheat	75	55	1.6(16)
		Preheat	55	35	
Absorption Chiller(Ammonia based)			95	55	

Current tariff structure (Mcal/h)

- $C_{tot} = C_b + C_u = C_b + \alpha \times \sum mc\Delta T\Delta t$
 - C_b (basic rate): charged by contract heating area or total heat capacity
 - Residential: contract heating area [Vm²]
 - Commercial/public: total installed capacity [\/(Mcal/h)]
 - C_u (usage rate): charged by actual heat usage

Туре	C	α [₩/Mcal]			
туре	C _b	Single	Graded		
Residential	52.40 ₩/m²	66.05	Spring/Fall Summer Winter	64.73 58.25 67.99	
Commercial	396.79 ₩/(Mcal/h)	85.77	Peak time(7~10AM) Non-peak time	98.65 81.48	
Public	361.98 ₩/(Mcal/h)	74.90	Peak time(7~10AM) Non-peak time	86.13 71.16	


Table 2 Unit price of district heat (2016)


3. Heat tariff assessment (1)

New concept of heat tariff assessment

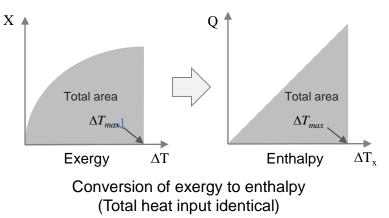
- The existing charge system based on enthalpy is very simple, flow $\times \Delta T$.
- If both quantity and quality of energy are to be accounted for, it is necessary to change the tariff system based on exergy concept.
- Exergy temperature difference based on flow exergy of district heating substation is calculated as follows.
- Total amount of exergy in a certain range is equal to the total amount of heat.

3. Heat tariff assessment (2)

New concept of heat tariff assessment

$$X = m(\psi_s - \psi_r) = mc \left[\left(T_s - T_r \right) - T_o \ln \frac{T_s}{T_r} + \frac{v}{c} \left(P_s - P_r \right) \right]$$
$$= mc \left[\Delta T - T_o \ln \frac{T_s}{T_r} + \frac{v}{c} \Delta P \right]$$

$$\Delta T_{x} = \left[\Delta T - T_{o} \ln \frac{T_{s}}{T_{r}} + \frac{v}{c} \Delta P\right] \frac{\int_{0}^{\Delta T_{\max}} \dot{Q} \, d\Delta T}{\int_{0}^{\Delta T_{\max}} \dot{X} \, d\Delta T}$$

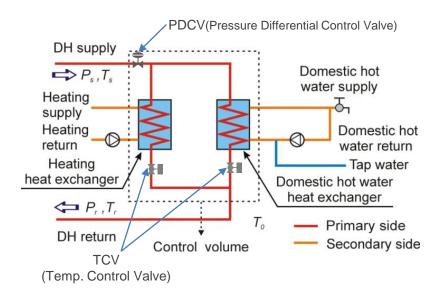

Where,

$$\int_{0}^{\Delta T_{\max}} Q \, d\Delta T = m c \, \frac{\Delta T_{\max}^2}{2}$$

$$\int_{0}^{\Delta T_{\max}} X \, d\Delta T = m c \left[\frac{\Delta T_{\max}^2}{2} + T_o (T_s - \Delta T_{\max}) \ln(\frac{T_s}{T_s - \Delta T_{\max}}) - T_o \Delta T_{\max} + \frac{v}{c} \, \Delta P \Delta T_{\max} \right]$$

 $Q_x = mc (\Delta T_x)$

X: Total amount of exergy[kJ] Ψ_s : Flow exergy at supply side[kJ/kg] Ψ_r : Flow exergy at return side[kJ/kg] T_s : Supply temperature[K], T_r : Return temperature[K] T_o : Ambient temperature[K] P_s : Supply pressure[kPa], P_r : Return pressure[kPa] Q_x : Total amount of heat[kJ] ΔT : Enthalpy-based temperature difference[K] ΔT_x : Exergy-based temperature difference[K]



4. Modeling approach

Model

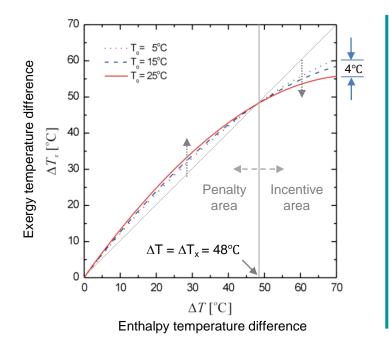
- Control volume: Primary side includes control valves and heat exchangers

Parameter ranges

- Variables
 - \cdot Ambient temperature (T_o)
 - \cdot Supply temperature (T_s)
 - \cdot Pressure drop in substation ($\Delta P)$
 - \cdot Maximum temperature difference ($\Delta T_{max})$

Table 3 Parameter range for exergy calculation

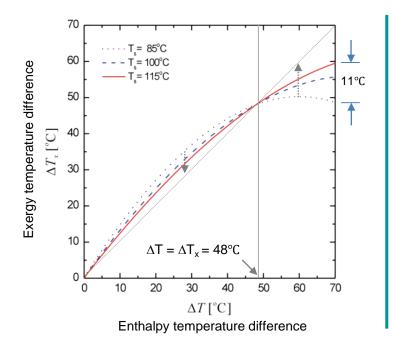
T _o [°C]	T _s [°C]	∆P [kPa]	ΔT_{max} [°C]
5	85	50	40
15	100	100	50
25	115	150	60
-	-	-	70


: Baseline

5. Results (1)

Effect of ambient temperature (T_o)

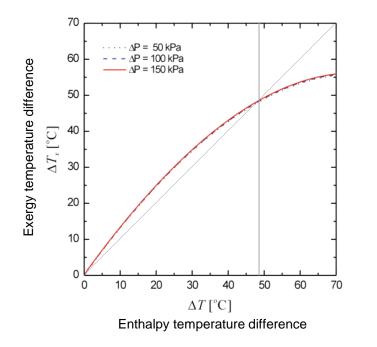
- Conditions: T_s =100°C, Δ P=100 kPa, ΔT_{max} =70°C


- When temperature difference between supply and return temperature is 48°C, Δ T and Δ T_x are equal.
- The higher is the ambient temperature, the larger is the temperature difference between enthalpy and exergy due to increased exergy loss.
- The maximum gap of exergy temperature differences with the ambient temperature is about 4°C at Δ T of 70°C.
- When compared with winter season condition, ΔT_x is larger than ΔT during summer season.

5. Results (2)

Effect of supply temperature (T_s)

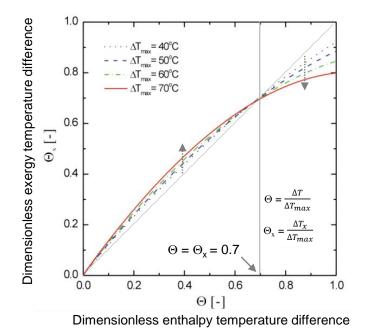
- Conditions: T_0 =15°C, Δ P=100 kPa, Δ T_{max}=70°C


- When temperature difference between supply and return temperature is 48°C, ΔT and ΔT_x are equal.
- When supply temperature increases, ΔT_x approaches ΔT_x . It means the temperature difference in winter is smaller than in summer.
- When ΔT is higher than 48°C, the difference between ΔT_x and ΔT increases. At ΔT =70°C the maximum gap of ΔT_x with supply temperature is more than 11°C.
- For all cases, ΔT_x is most sensitive when supply temperature is 85°C.

5. Results (3)

Effect of pressure drop (ΔP)

- Conditions: $T_0=15^{\circ}C$, $T_s=100^{\circ}C$, $\Delta T_{max}=70^{\circ}C$


- Changes in ΔP do not affect ΔT_x .
- ΔT_x is almost equal to ΔT for different ΔP . $\cdot \Delta T = \Delta T_x = 48^{\circ}$ C at 50 kPa $\cdot \Delta T = \Delta T_x = 48^{\circ}$ C at 100 kPa $\cdot \Delta T = \Delta T_x = 49^{\circ}$ C at 150 kPa
- Friction losses in heat exchangers, pipes, and valves can be negligible for ΔT_x calculation because the district heating water is incompressible.

5. Results (4)

Effect of max. temperature difference (ΔT_{max})

- Conditions: $T_0=15^{\circ}C$, $T_s=100^{\circ}C$, $\Delta P=100$ kPa

- When $\Delta T_{max} = 40^{\circ}$ C, then $\Delta T = \Delta T_x = 28^{\circ}$ C. When $\Delta T_{max} = 70^{\circ}$ C, then $\Delta T = \Delta T_x = 48^{\circ}$ C.
- The smaller ΔT_{max} , the closer ΔT_x to $\Delta T.$
- Depending on the range of ΔT_{max} , the rate of increase and reduction can vary greatly.
- To apply new tariff to users, ΔT_{max} range should be evaluated along with building types, operation conditions of district heating plant.
- It can be a basis for establishing the limit of return temperature.

5. Results (5)

Practical application for a consumer in Korea

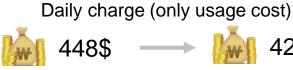


Table 4 Information of a consumer

Category	Contents	Remarks	
Location	Cheonju	Latitude 36.4	
User type	Commercial	24h operation	
Heating area	1,700m²		
Heating capacity	1,020 Mcal/h	Heating: 200 Mcal/h DHW: 820 Mcal/h	

Table 5 Daily data of energy consumption(winter)

<i>t</i> [h]	m [ton/h]	⊿T [°C]	⊿ <i>T_x</i> [°C]	Q [Mcal]	Q _x [Mcal]
1	5.29	47.1 🌑	47.4	249.2	251.0
2	6.44	51.5 🌑	50.7	331.7	324.6
3	5.41	56.8 🌑	54.5	307.1	294.4
4	2.67	62.5 🌑	58.3	166.8	157.5
~	~	~	~	~	~
21	4.62	60.8 🌑	57.2	280.7	263.2
22	5.79	50.6 🌑	50.0	293.0	290.2
23	4.62	48.1 -	48.1	222.3	221.4
24	4.86	42.0 🌑	43.2	204.0	211.9
Total				6004.3	5735.8

Save 4.5%

Practical application for a consumer in Korea

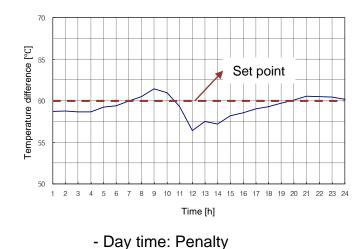
Table 6 Daily data of energy consumption (spring)

<i>t</i> [h]	m [ton/h]	⊿T [°C]	⊿ <i>T_x</i> [°C]	Q [Mcal]	Q _x [Mcal]
1	0.83	50.9 🌑	49.8	42.2	41.4
2	1.05	51.8 🌑	50.4	54.4	52.9
3	2.16	49.5 🌑	49.0	106.9	105.7
4	3.50	53.0 🌑	51.1	185.5	178.8
~	~	~	~	~	~
21	2.21	55.8 🌑	52.7	123.3	116.4
22	1.65	56.4 🌑	53.0	93.1	87.4
23	1.63	54.1 🌑	51.7	88.2	84.3
24	1.62	56.4 🌑	53.0	91.4	85.8
Total				2671.9	2562.5

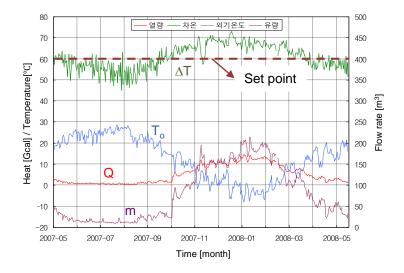
Table 7 Summary of daily tariff with season

Tariff		Enthalpy [₩]	Exergy [₩]	Difference [%]
	C _b	13,490	13,490	-
Winter	Cu	514,989	491,960	4.5
	C _{tot}	528,479	505,450	4.4
	Cb	13,490	13,490	-
Spring	Cu	229,168	219,785	4.1
	C _{tot}	242,658	233,275	3.9

* 1 cent = 11₩


Daily charge (only usage cost)

5. Results (7)


Comparison of daily and annual consumption

- Morning/Night: Incentive

Daily heat usage data (example)

Annual heat energy consumption data (example)

- Winter, Fall: Incentive

- Spring, Summer: Penalty

6. Conclusion

- 1. When assessing district heating system heat tariffs, exergy rather than enthalpy should be better to reflect energy and economic value.
- 2. Supply temperature and maximum temperature difference(ΔT_{max}) have a dominant effect on exergy. When setting ΔT_{max} , the actual operation conditions of a district heating plant must be evaluated.
- 3. As a result of applying the new tariff system to an actual district heating user, the daily average charge is reduced by more than 4% in winter and spring.
- 4. New tariff assessment by exergy can be applied to different rates by time, seasons, and consumer characteristics. Therefore, it is a reasonable charge system in terms of plant efficiency compensation for suppliers as well as incentive or penalty for users.
- 5. In the future, additional research will be necessary into a variety of scenarios, such as a flexible rate system that provides incentives in the range of lower return temperature or penalties for higher return temperature.

Thank you

Junghwan Moon, Principal Researcher

E-mail: jh76.moon@samsung.com

