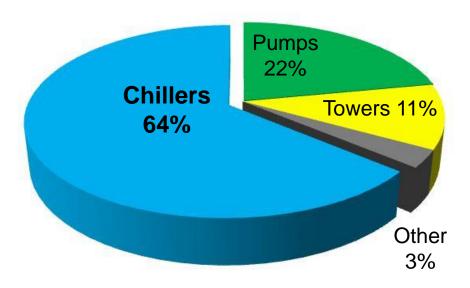
Next Generation DCP Optimization using MV VSDs

Vivek Apte Regional Product Director Johnson Controls - Middle East Cell : +971506243059

IDEA 2016- Dubai

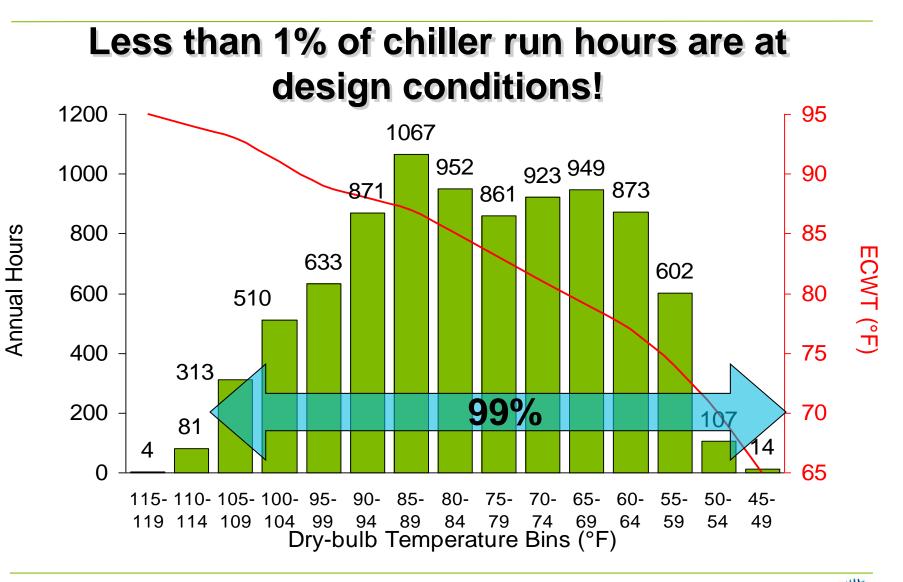


Central Plant Optimization

Energy and operating Costs

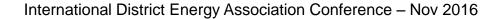
- Electricity costs are rising at rates greater than inflation
- Owners are seeking a "total cost of ownership" solution

Total Chiller Plant Energy Use

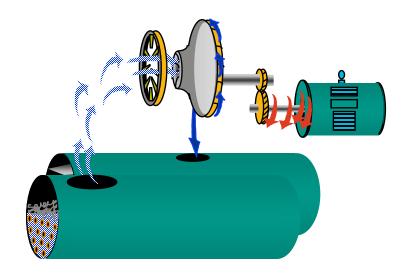

In a District Cooling Plant, Chillers, by far, have the Largest Energy Demand.

- Chillers Spend more than 99% of Operating hours at Offdesign Conditions.
- Simultaneous occurrence of 100% Load and Design Outdoor Conditions is very unlikely.

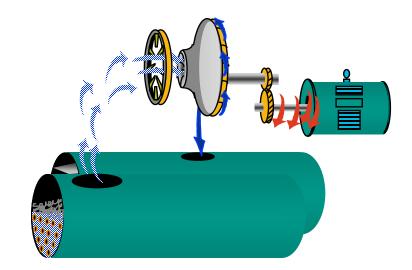
Compressor Running at Lower Speeds, whenever possible, Consumes Less Power and Can Potentially save upto 30% of Annual Energy Consumption.



General Weather Pattern in the Gulf


lohnso

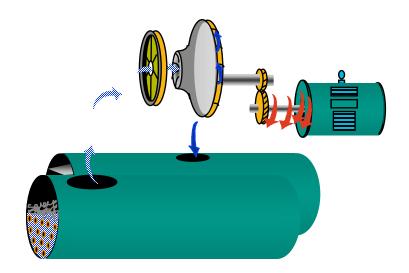
Controls


Centrifugal Chillers at Design Conditions

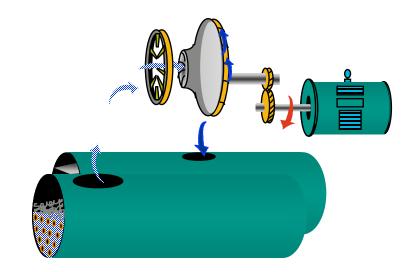
Constant Speed

Loaded Chiller : PRVs Open Motor at Design Speed

Variable Speed


Loaded Chiller : PRVs Open Motor at Design Speed

International District Energy Association Conference – Nov 2016


Centrifugal Chillers at Off-Design Conditions

Constant Speed

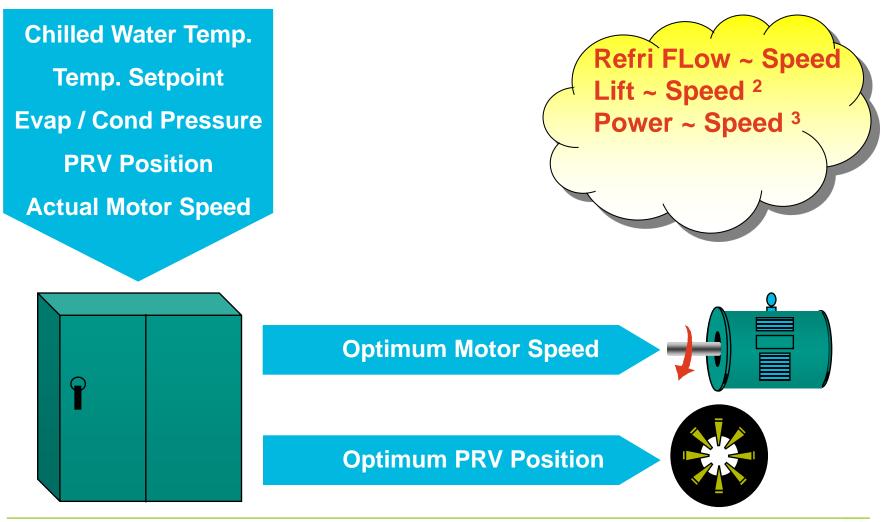
PRV close as load decreases Motor speed remains constant at full

Variable Speed

Optimizes compressor efficiency Motor speed slows down Optimizes PRV position Consumes less energy

Centrifugal Chillers at Off-Design Conditions

With the use of VSD, Can we do away with the Inlet Vanes ?


No, Certainly not.

A balance between the speed reduction and vane throttling is needed for 'Surge-Free' Operation at Low Load conditions.

Centrifugal Chillers at Off-Design Conditions

Additional Benefits of a VSD

Improved and Constant PF of 0.98

- Eliminates PF correction Capacitors
- Reduces Current for Same Power

- Eliminates Inrush Current (<100% FLA)
 - Enhances motor life
 - Reduces Emergency Power Generator Size.
 - Reduced driveline wear
- Reduced Sound Level at Lower Loads.

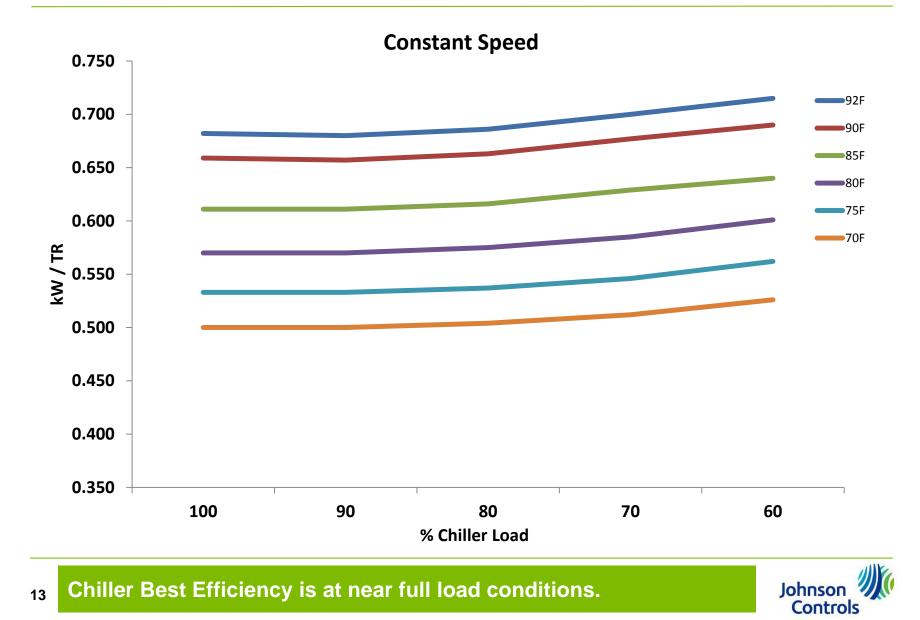
> At night time, when you need low noise operation.

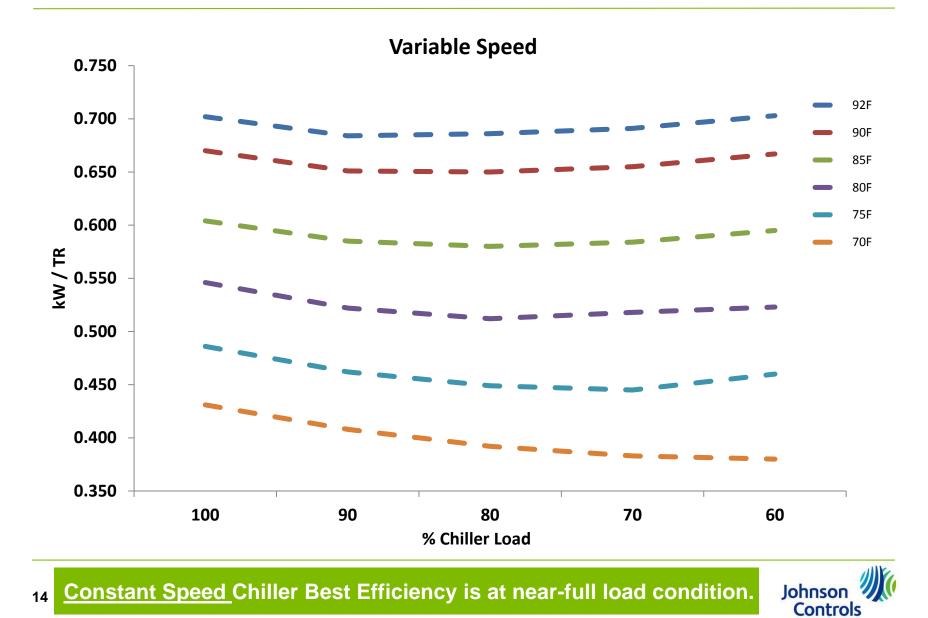
- Eliminates ill-effects of exaggerated design parameters.
 - Higher Condenser Water Temp
 - Fouling Factors

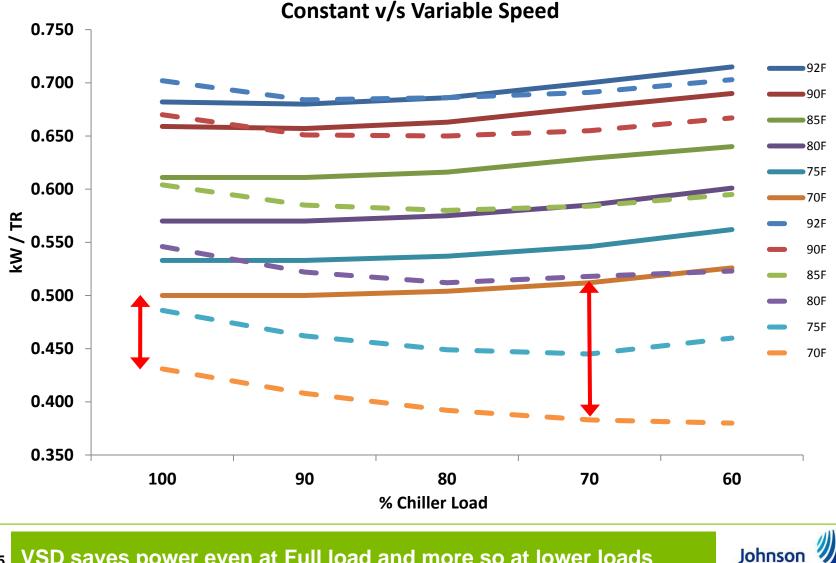
VSD Chiller : District Cooling Application

But....I have so many chillers, which are sequenced and hence run close to full load most of the time

We are very familiar with VSD application where the speed is Modulated to maintain static pressure at varying flow-rate.


Air Handling Units in Variable Air Volume systems
Secondary Chilled Water Pumping




Centrifugal Chiller Compressor are also subject to situations, where the static pressure is reduced while the flow rate needs to be maintained

Imagine....Reduced Cond pressure due to lower Wet Bulb conditions and constant refrigerant flow rate due to constant cooling load.

Controls

VSD saves power even at Full load and more so at lower loads 15

Off Design Performance of a Typical Centrifugal Chiller								
% Chiller Load		Input kW/Ton at Varying ECWT						
% Chiner Load		92.3F	90F	85F	80F	75F	70F	65F
	Constant Speed	0.682	0.659	0.611	0.57	0.533	0.5	0.469
100	Varibale Speed	0.702	0.67	0.604	0.546	0.486	0.431	0.383
	% Difference	2.9%	1.7%	-1.1%	4.2%	-8.8 %	-13.8%	-18.3%
	Constant Speed	0.68	0.657	0.611	0.57	0.533	0.5	0.469
90	Varibale Speed	0.684	0.651	0.585	0.522	0.462	0.408	0.358
	% Difference	0.6%	-0.9%	4.3%	-8.4%	-13.3%	-18.4%	-23.7%
	Constant Speed	0.686	0.663	0.616	0.575	0.537	0.504	0.469
80	Varibale Speed	0.686	0.65	0.58	0.512	0.449	0.392	0.34
	% Difference	0.0%	- 2.0 %	-5.8%	-11.0%	-16.4%	-22.2%	-27.5%
	Constant Speed	0.7	0.677	0.629	0.585	0.546	0.512	0.469
70	Varibale Speed	0.691	0.655	0.584	0.518	0.445	0.383	0.328
	% Difference	-1.3%	-3.2%	- 7.2 %	-11.5%	-18.5%	-25.2%	-30.1%
60	Constant Speed	0.715	0.69	0.64	0.601	0.562	0.526	0.469
	Varibale Speed	0.703	0.667	0.595	0.523	0.46	0.38	0.322
	% Difference	-1.7%	-3.3%	- 7.0 %	-13.0%	-18.1%	- 27.8 %	-31.3%
% Annual Oj	% Annual Operating Hours 0.9 3 21.2 26.4 25.8 19.2				3.5			

VSD saves power even at Full load and more so at lower loads

Medium Voltage Variable Speed Drives Misconceptions & Fact Check

- MV Variable Speed Drives are expensive, with un-attractive payback
- District Cooling Plants always operate at Full Load Conditions
- Use for Thermal Storage means the chillers will always be operating at full design load.

 Chillers must be evaluated for Full Load Efficiency at "Design" Conditions

- MV-VSD costs and size, both have reduced with improved technology and its time to evaluate the payback
- DCP's seldom see full Delta T. As such, chillers are loaded between 60% and 80%
- Again, limited by the low Delta T. Also, Thermal Storage Tank is always charged at off peak conditions and hence at low WB temp it will benefit most with VSD technology.
- "Real" World conditions will always see reduced ECWT's and lower loads. Off design performance of Chillers is critical.

Medium Voltage Variable Speed Drives Misconceptions & Fact Check

- MV Variable Speed Drives are expensive, with un-attractive payback
- District Cooling Plants always operate at Full Load Conditions
- Use for Thermal Storage means the chillers will always be operating at full design load.

 Chillers must be evaluated for Full Load Efficiency at "Design" Conditions

- MV-VSD costs and size, both have reduced with improved technology and its time to evaluate the payback
- DCP's seldom see full Delta T. As such, chillers are loaded between 60% and 80%
- Again, limited by the low Delta T. Also, Thermal Storage Tank is always charged at off peak conditions and hence at low WB temp it will benefit most with VSD technology.
- "Real" World conditions will always see reduced ECWT's and lower loads. Off design performance of Chillers is critical.

Off Design Performance of a Typical Centrifugal Chiller								
% Chiller Load		Input kW/Ton at Varying ECWT						
% Chiner Load		92.3F	90F	85F	80F	75F	70F	65F
	Constant Speed	0.682	0.659	0.611	0.57	0.533	0.5	0.469
100	Varibale Speed	0.702	0.67	0.604	0.546	0.486	0.431	0.383
	% Difference	2.9%	1.7%					
	Constant Speed	0.68	0.657	0.611	0.57	0.533	0.5	0.469
90	Varibale Speed	0.684	0.651	0.585	0.522	0.462	0.408	0.358
	% Difference	0.6%						
	Constant Speed	0.686	0.663	0.616	0.575	0.537	0.504	0.469
80	Varibale Speed	0.686	0.65	0.58	0.512	0.449	0.392	0.34
	% Difference	0.0%	- 2.0 %	-5.8%	-11.0%	-16.4%	-22.2%	-27.5%
	Constant Speed	0.7	0.677	0.629	0.585	0.546	0.512	0.469
70	Varibale Speed	0.691	0.655	0.584	0.518	0.445	0.383	0.328
	% Difference	-1.3%	-3.2%	-7.2%	-11.5%	-18.5%	-25.2%	-30.1%
60	Constant Speed	0.715	0.69	0.64	0.601	0.562	0.526	0.469
	Varibale Speed	0.703	0.667	0.595	0.523	0.46	0.38	0.322
	% Difference	-1.7%	-3.3%	- 7.0 %	-13.0%	-18.1%	-27.8%	-31.3%
% Annual O	perating Hours	0.9	3	21.2	26.4	25.8	19.2	3.5

Medium Voltage Variable Speed Drives Misconceptions & Fact Check

- MV Variable Speed Drives are expensive, with un-attractive payback
- District Cooling Plants always operate at Full Load Conditions
- Use for Thermal Storage means the chillers will always be operating at full design load.

- MV-VSD costs and size, both have reduced with improved technology and its time to evaluate the payback
- DCP's seldom see full Delta T. As such, chillers are loaded between 60% and 80%
- Again, limited by the low Delta T. Also, Thermal Storage Tank is always charged at off peak conditions and hence at low WB temp it will benefit most with VSD technology.
- Chillers must be evaluated for Full Load Efficiency at "Design" Conditions
- "Real" World conditions will always see reduced ECWT's and lower loads. Off design performance of Chillers is critical.

Off Design Performance of a Typical Centrifugal Chiller								
% Chiller Load		Input kW/Ton at Varying ECWT						
% Chiller Load		92.3F	90F	85F	80F	75F	70F	65F
	Constant Speed	0.682	0.659	0.611	0.57	0.533	0.5	0.469
100	Varibale Speed	0.702	0.67	0.604	0.546	0.486	0.431	0.383
	% Difference	2.9%	1.7%		4.2%			
	Constant Speed	0.68	0.657	0.611	0.57	0.533	0.5	0.469
90	Varibale Speed	0.684	0.651	0.585	0.522	0.462	0.408	0.358
	% Difference	0.6%			-8.4%			
	Constant Speed	0.686	0.663	0.616	0.575	0.537	0.504	0.469
80	Varibale Speed	0.686	0.65	0.58	0.512	0.449	0.392	0.34
	% Difference			-5.8%	-11.0%	-16.4%	-22.2%	-27.5%
	Constant Speed	0.7	0.677	0.629	0.585	0.546	0.512	0.469
70	Varibale Speed	0.691	0.655	0.584	0.518	0.445	0.383	0.328
	% Difference			-7.2%	-11.5%	-18.5%	-25.2%	-30.1%
	Constant Speed	0.715	0.69	0.64	0.601	0.562	0.526	0.469
60	Varibale Speed	0.703	0.667	0.595	0.523	0.46	0.38	0.322
	% Difference			- 7.0 %	-13.0%	-18.1%	-27.8%	-31.3%
% Annual O	perating Hours	0.9	3	21.2	26.4	25.8	19.2	3.5

Medium Voltage Variable Speed Drives Misconceptions & Fact Check

- MV Variable Speed Drives are expensive, with un-attractive payback
- District Cooling Plants always operate at Full Load Conditions
- Use for Thermal Storage means the chillers will always be operating at full design load.

 Chillers must be evaluated for Full Load Efficiency at "Design" Conditions

- MV-VSD costs and size, both have reduced with improved technology and its time to evaluate the payback
- DCP's seldom see full Delta T. As such, chillers are loaded between 60% and 80%
- Again, limited by the low Delta T. Also, Thermal Storage Tank is always charged at off peak conditions and hence at low WB temp it will benefit most with VSD technology.
- "Real" World conditions will always see reduced ECWT's and lower loads. Off design performance of Chillers is critical.

Medium Voltage Variable Speed Drives Misconceptions & Fact Check

- MV Variable Speed Drives are expensive, with un-attractive payback
- District Cooling Plants always operate at Full Load Conditions
- Use for Thermal Storage means the chillers will always be operating at full design load.

 Chillers must be evaluated for Full Load Efficiency at "Design" Conditions

- MV-VSD costs and size, both have reduced with improved technology and its time to evaluate the payback
- DCP's seldom see full Delta T. As such, chillers are loaded between 60% and 80%
- Again, limited by the low Delta T. Also, Thermal Storage Tank is always charged at off peak conditions and hence at low WB temp it will benefit most with VSD technology.
- "Real" World conditions will always see reduced ECWT's and lower loads. Off design performance of Chillers is critical.

Case Study

Annual Utilities Cost

20,000 TR Plant

Annual Water and Electricity Cost Comparison for a 20,000 TR Plant with following Options

OPTION 1

Normal Full Load Efficiency 4 x 5,000 TR series pair @ Full Load <u>0.658 ikW/TR</u>

OPTION 2 Option 1 + VSD 4 x 5,000 TR series pair @ Full Load <u>0.691 ikW/TR</u>

OPTION 3 High Full Load Efficiency 4 x 5,000 TR series pair @ Full Load <u>0.627 ikW/TR</u>

Summary of Case Study

Description	Option1 0.653 kW/TR Constant Speed Normal Efficiency Normal Pressure Drop	Option2 0.691 kW/TR Variable Speed Standard Efficiency Option 1 + VSD	Option3 0.627 kW/TR Constant Speed High Efficiency Low Presure Drop			
Annua	al Cost of Utilities (AED '(000) as of Nov2016				
Chillers	21,950	19,900	21,770			
Primary Chilled Water Pump	2,110	2,110	1,770			
Condenser Water Pump	6,382	6,382	5,827			
Total Energy Cost	30,442	28,392	29,367			
Total Water Consumption	8,137	8,034	8,128			
Total Cost of Utilities	38,579	36,426	37,495			
	Budgetary Initial Cost	(AED '000)				
Price of Chiller	19,925	19,925	23,900			
Price of Solid State Starter	2,540		2,540			
Price of Variable Speed Drive		8,257				
Total Initial Cost	22,465	28,182	26,440			
Additional Cost of VSD		1 742				
(Compared to Option3)		1,742				
Saving in Annual Cost of Utilities		1.000				
(Compared to Option3)		1,069				
Simple Pay back period in years		1.63				
Costs common among Options (Secondary Pump and Cooling Tower) not considered for comparison						

Medium Voltage Variable Speed Drives

Selection Suggestions

MV VSDs have an internal transformer irrespective of incoming voltage and output voltage.

- Eliminate external transformer.
- Select output voltage to allow compact one piece drive.

MV VSD Application Suggestions								
Incoming Voltage	Specified Motor Voltage	VSD In Voltage	VSD Out Voltage	Motor Size	Remarks			
New Project	New Projects							
11000	3300	11000	3300	Upto 2250 HP	Eliminate External Step Down Xmer			
11000	11000	11000	3300	Upto 2250 HP				
11000	3300	11000	4000	2500 HP	Friday of Next Con Compact VCDs			
11000	11000	11000	4000	2500 HP	For Use of Next Gen Compact VSDs			
Retrofit Proj	Retrofit Project with VSD compatible motor							
11000	3300	3300	3300	Upto 2500HP	Using existing step down Xmer			
11000	3300	11000	3300	Upto 2500HP	Remove existing Xmer to save losses			
11000	11000	11000	11000	Upto 2500HP				
Retrofit Project with VSD incompatible motor (motor needs replacement)								
Treat as if a new proejct								

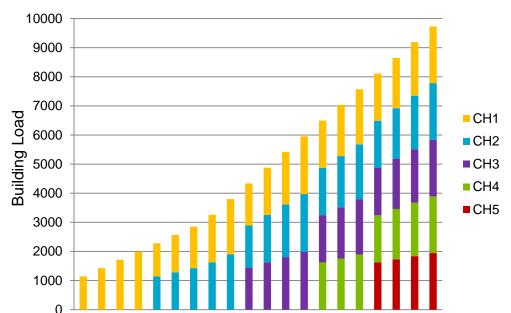
Now that we have VSDs

How do we sequence the plant so as to operate chillers at their the Best Efficiency (COP) ?

Sequencing for Best Year-round COP

The answer to the Big Questions is simple and straight forward for **Constant Speed Drive Chillers**.

- For best COP, the Chillers should be made to operate at near full load, as far as possible.
- So, Sequence in a way that we run just enough quantity of Chillers to meet the Demand Load.
- This is extended to pumps as well along with the chillers and thus we run lesser water quantity in the primary loop and run fewer pumps
- Andthis is the traditional Load Based Sequencing

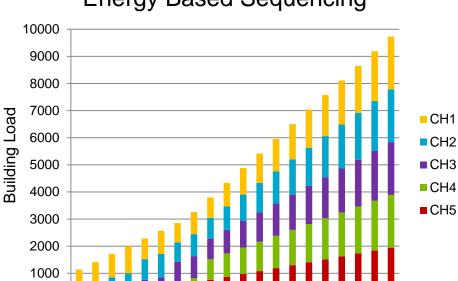

Traditional Load based Sequencing

Consider:

- 10,000 TR Chiller Plant
- Qty (5) 2000 TR chillers piped in parallel
- **Dedicated auxiliaries***
- **Typical Load Line**

Year round operation - 24H/7D

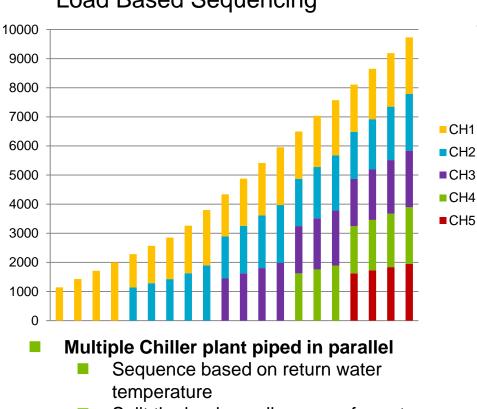
Facility Load (%)	Chiller Systems Operating	Chiller Load Range (%)
100	5	100-80%
80	4	100-75%
60	3	100-65%
40	2	100-50%
20	1	100-10%



Consider:

- 10,000 TR Chiller Plant
- Qty (5) 2000 TR chillers piped in parallel
- Dedicated auxiliaries*
- **Typical Load Line**

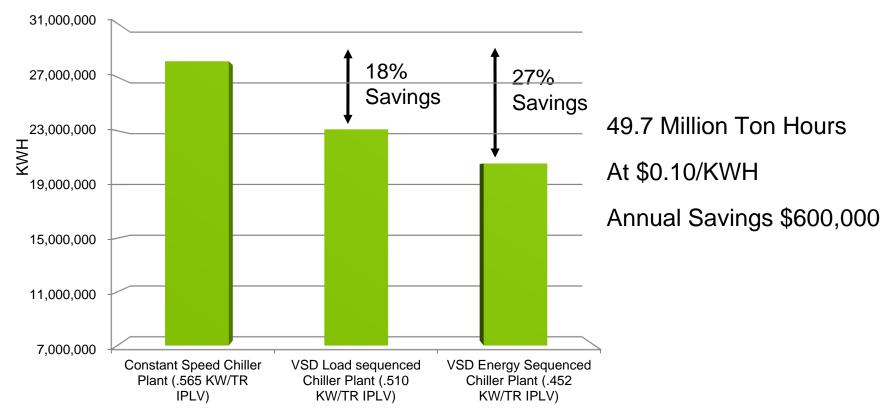
Year round operation - 24H/7D


Facility Load (%)	Chiller Systems Operating	Chiller Load Range (%)
100	5	100-81%
80	5	75 - 65%
60	5	60 - 43%
40	3 - 4	43 - 35%
20	1 - 2	50 - 35%

0

Energy Based Sequencing

Load Based Sequencing


Split the load equally among fewest number of chillers to satisfy the load

10000 9000 8000 7000 CH1 CH2 6000 CH2 CH3 5000 CH3 CH4 4000 CH5 3000 2000 1000 0 Multiple Chiller plant piped in parallel Keep chillers on line and in part load operation for as long as possible as cooling load decreases

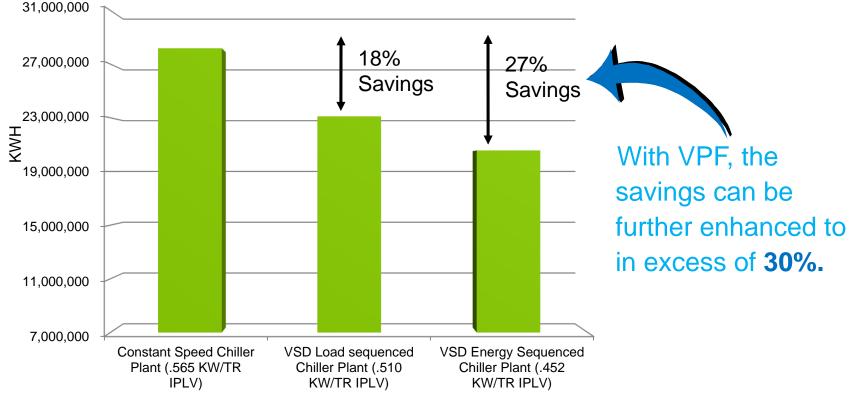
Energy Based Sequencing

Turn on and off chiller systems based on energy consumption

10,000 TR plant

Fantastic!...We saved so much in Chiller Energy.....

but, What about the pumps?


Shall we end up running more pumps than required. Yes, you will....

But, when you combine it with Variable Primary Flow (VPF), you will actually save power.

International District Energy Association Conference – Nov 2016

Bringing together the potential of Variable Speed Chillers & Variable Primary Flow pumping

10,000 TR plant

Bringing together the potential of Variable Speed Chillers & Variable Primary Flow pumping

.....And we all have been using it for so many years already.

The best technologies are inspired by Nature.

International District Energy Association Conference – Nov 2016