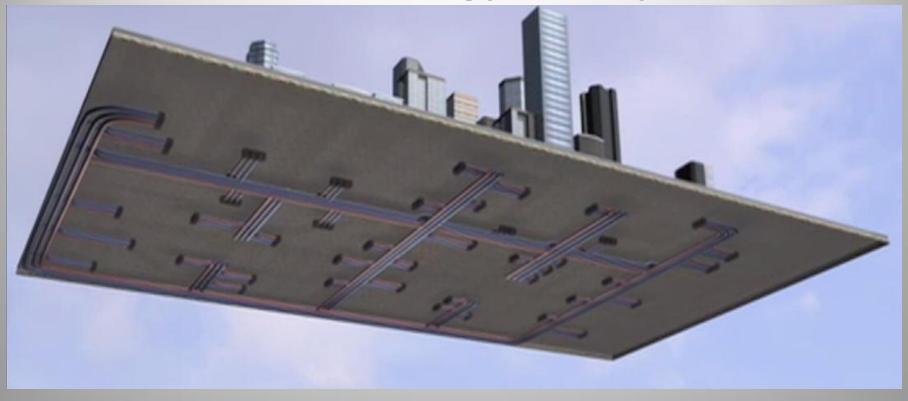


107TH ANNUAL CONFERENCE & TRADE SHOW • ST. PAUL, MN • JUNE 20 - 23

Evaluating District Energy Options Workshop Session 1

Henry Johnstone PE



District Energy Concept

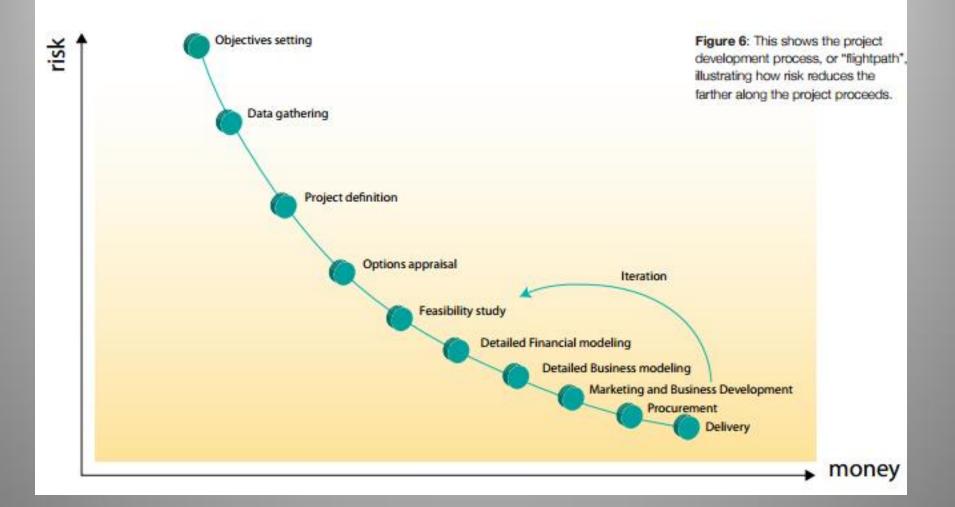
- Central energy conversion plant(s) with underground network of heating and cooling lines, possibly electric power
- Aggregated thermal loads creates scale to apply fuels, technologies and strategies not feasible on single-building basis
- Provides Platform for Reliability, Resiliency, and Flexibility on a urban scale

District Energy Concept

- Economies of scale / load diversity
- Centralized operations
- Enables energy storage

- Adapts to smart grid
- High efficiency/ sustainability
- Alternative H&C Technologies
- Combined Heat and Power

District Energy Concept


Benefits

- Environmental
 - Improved energy efficiency
 - Reduced Greenhouse Gas
- Utility
 - Reduced energy utility costs
 - Consumption, Demand, Utilization
- Developer
 - Reduced initial capital cost
 - Reduced annual operating costs
 - Increased leasable SF
- Owner
 - Consolidated energy, O&M
 - Potential improved occupancy

Risk

- Cost of infrastructure
- Return on investment
- Certainty of load

District Energy Decision Making

IDEA partners with US DOE CHP Technical Assistance Partnerships to provide first order screening

- For Projects with a proposed Multi-Building/Mixed Use Development.
- With identified Champions/Stakeholders/Decision Makers.
- To provide a Green-Yellow-Red first order assessment of options for phased district development & the value of CHP and District Energy.
- To assist Champion/Stakeholders/Decision Makers in moving the Project Forward.

High Density Planned Mixed Use Development

- Common Characteristics
 - Mixed Use: Live, Work, Play
 - Proximity to Mass Transit
 - High Efficiency, Low Carbon Footprint
 - Greenfield or major site redevelopment
 - Building Energy Efficiency Standards
 - Highly
 planned/documented/rendered/costed/branded
 - Little or no thought toward district heating, cooling or power

High Density Planned Mixed Use Development

- **Relevant Planning Parameters**
- Scale
 - 1 msf-10 msf
- Time to build out
 - 10-20 yrs
- Intended Occupancy
 - Hotel/Conference
 - Corporate Office/Office
 - Retail
 - Entertainment
 - Data Center
 - Residential*
- Developer Team -Building Ownership

Pittsburgh PA
Boulder CO
Westminster CO
Austin TX
Oakland CA
Mooretown CA
Tucson AZ

Example

Illustrative Model

View looking east with Harlan Street in the foreground and city hall with its tower in the background.

Illustrative Model View looking south along the new Eaton Street "green boulevard." On the left-hand side of the image, US 36 leads towards Denver.

Occupancy Type	input values here	input values l	here
	SF	# Bldg	
Large Office	1,000,000	2	
Medium Office	-	4	
Small Office	500,000	-	
Warehouse		-	
Stand Alone Retail	300,000	5	
Strip Mall	-	-	
Primary School		-	
Secondary School		-	
Supermarket	100,000	-	
Quick Service Restaurant		-	
Full Service Restaurant	100,000	5	
Hospital		-	
Outpatient Health Clinic		-	
Small Hotel	-	1	
Large Hotel	1,000,000	-	
Midrise Apt	1,000,000	5	
User Building 1	-	-	
User Building 2	-	-	
User Building 3	-	-	
User Building 4	-	-	
User Building 5	-	-	
Total	4,000,000	22	

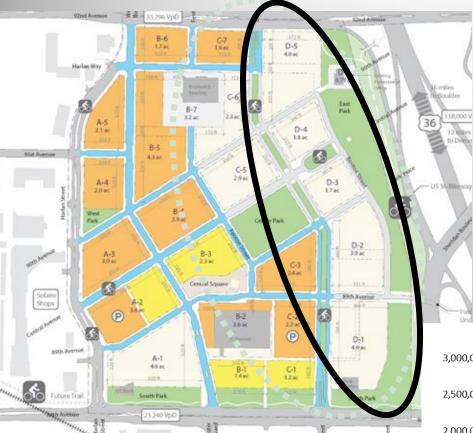
Developer built stand alone

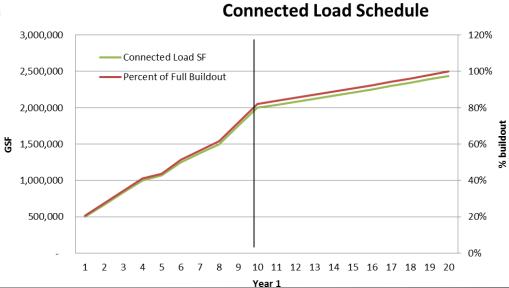
Package Equipment

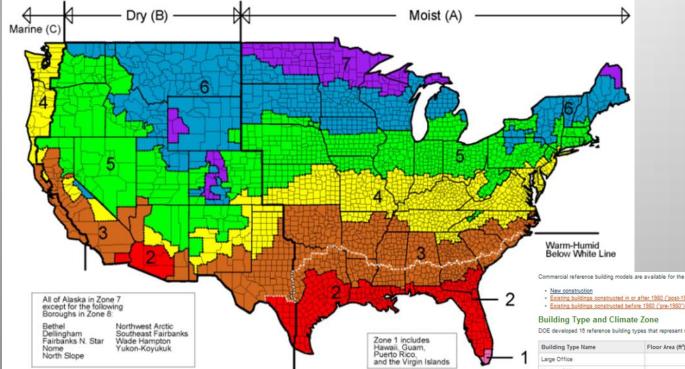
Performance A/C:1.1kW/Ton (peak) Gas Furnace Heat: 80% eff Single Duct VAV

Capital Cost

Include increased building elec 5.00-6.00\$/SF installed Additional Leaseable Space (including rooftop real estate)

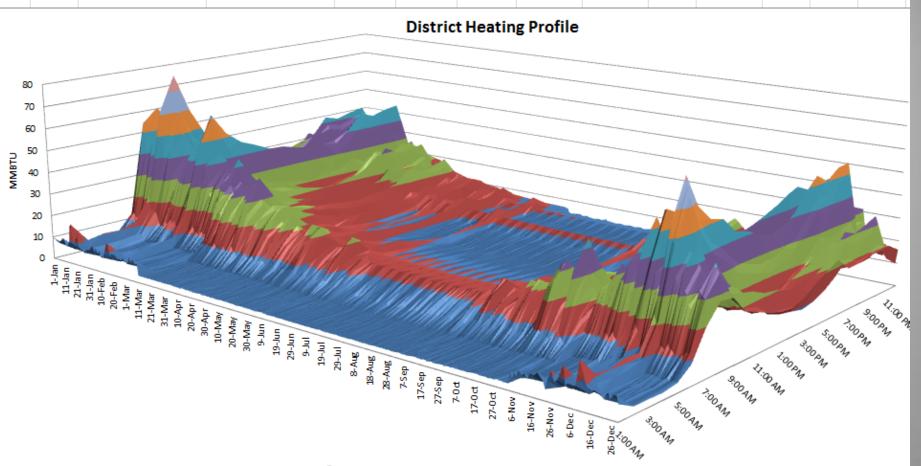

District Energy Alternatives


Remote


phase 2 load assumptions

Occupancy Type	input values here
	SF
Large Office	1,000,000
Medium Office	-
Small Office	300,000
Warehouse	
Stand Alone Retail	100,000
Strip Mall	-
Primary School	
Secondary School	
Supermarket	-
Quick Service Restaurant	
Full Service Restaurant	100,000
Hospital	
Outpatient Health Clinic	
Small Hotel	-
Large Hotel	500,000
Midrise Apt	
User Building 1	-
User Building 2	-
User Building 3	-
User Building 4	-
User Building 5	-
Total	2,000,000

District Energy For High Density Planned Development



Commercial reference building models are available for the following categories:

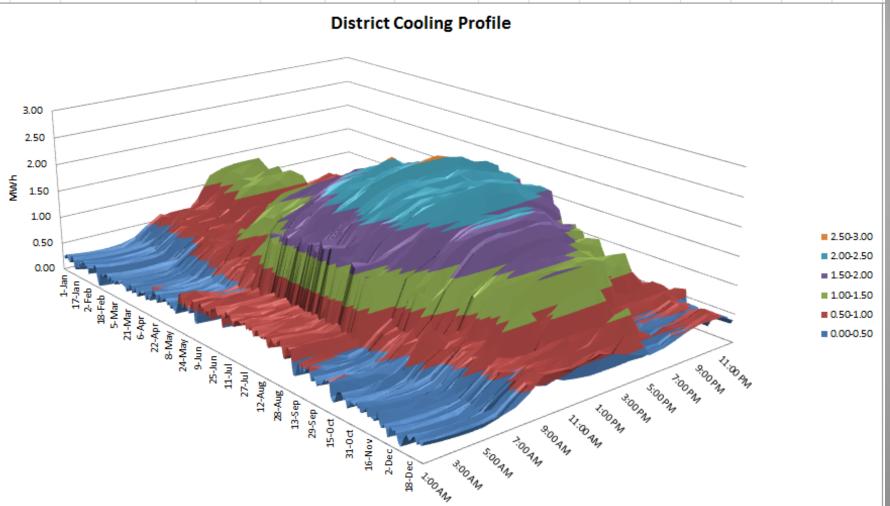
· Existing buildings constructed in or after 1980 ("post-1980")

DOE developed 10 reference building types that represent most commercial buildings across 10 locations, which represent all U.S. climate zones.

Building Type Name	Floor Area (ft ²)	Number of Floors
Large Office	498,588	12
Medium Office	53,628	3
Small Office	5,500	1
Varehouse	52,045	1
Stand-alone Retail	24,962	1
Strip Mall	22,500	1
Primary School	73,960	1
Secondary School	210,887	2
Supermarket	45,000	1
Quick Service Restaurant	2,500	1
Full Service Restaurant	5,500	1
Hospital	241,351	5
Dutpatient Health Care	40,948	3
imall Hotel	43,200	4
arge Hotel	122,120	6
/idrise Apartment	33,740	4

\$

¢


801,215 \$/yr

é le situe

Date

Sum of individual annual stand alone building heating system gas bills: \$801,215 (current \$)

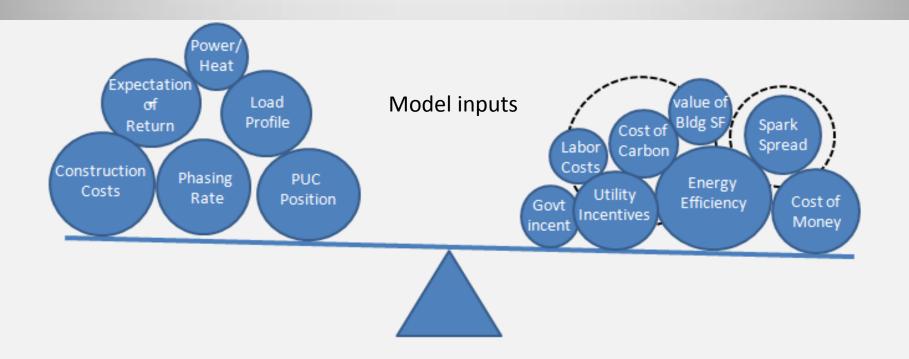
					he
	(District Natural Gas			
	r	max	77.49	MMBTU	
	ā	average	12.03	MMBTU	
	r	min	1.87	MMBTU	
	t	total	105,423	MMBTU	
	i	if gas cost	\$ 7.60	\$/MMBTU	then
	c	conditioned SF	2,000,000	19.37	BTU/SF

Date

					of indi
District electric chilling pov	wer		stand alone	Dullu	ing co
max	2.57	mW	3023	1 \$847	,115 (0
average	0.83	mW	2818	f	,
min	0.00	mW			
total	7240	mWhr	8,517,999	ton hr	
if electric cost	0.117	\$/kWh	then	\$ 847,115	5.04 \$/yr
conditioned SF	2,000,000	661.56	SF/Ton	\$ 0).42 \$/SF/

Im of individual annual stand alone c ilding cooling system electric bills: 847,115 (current \$)

0.42 \$/SF/Yr


District Energy For High Density Planned Development

- Energy Source Alternatives
 - Heating
 - Natural gas
 - Biomass
 - Cooling
 - Electric
 - Recovered Heat
 - Alternative
 - Electric Power
 - Utility purchase
 - CHP
 - On-site Renewable

District Energy For High Density Planned Development

- Utility Cost Factors
 - Minimum Demand
 - Variability
 - CHP Gas
 - Cooling energy sources
 - Electric
 - Recovered Heat
 - Thermal Energy Storage
 - Electric Power
 - Utility purchase
 - Demand, Time of Use
 - Distributed On-site Renewable
 - CHP
 - Trends

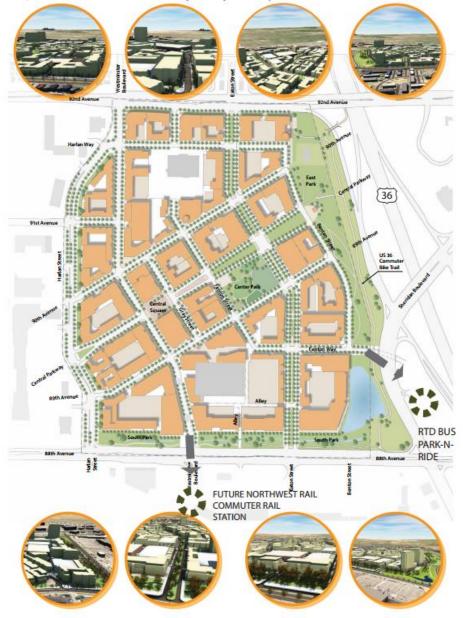
balance

screening tool

Inputs

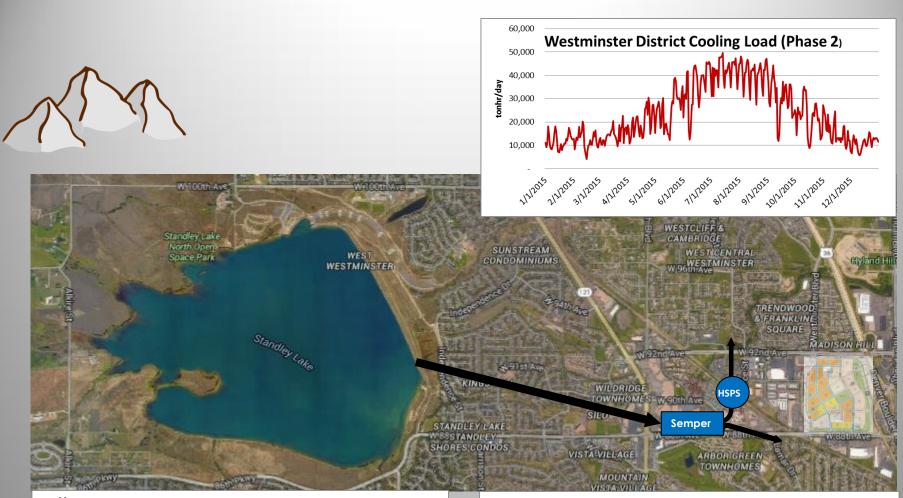
- Location
- Building Types, Size, Age
- Utility Costs
- Finance Costs
- District Energy Alternative
- Conversion Efficiency
- Construction Costs
- Labor Costs
- Project Phasing

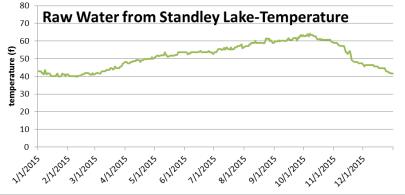
Outputs

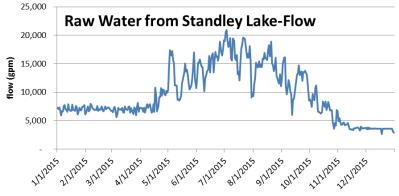

- Energy Load Profile
- 20 year Cash Flow Projection
 - Capital Expense
 - Operating Expense
- Simple Payback of Alternatives
- Return on Investment of Alternatives

An Urban Scale

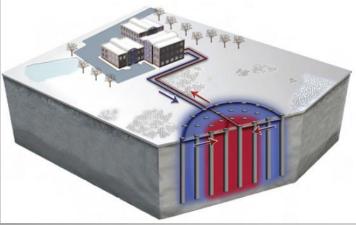
Example


To ensure compatibility of land uses within downtown and adjacent neighborhoods, basic regulations for land uses and intensity have been developed. The types of uses you will see in downtown include retail, office, business, hotel, commercial and residential. The likely intensity of development is similar to the model shown below:




Piping Mains Sized for full site build out Cooling Mains- 5300 Ton peak – 7,000 GPM@ 18F dT – 18" D - \$1,000/ft Heating Mains- 33 MBH peak – 1,750 GPM@40 F dT – 10" D - \$500/ft Phase A-D branches (to building stubout) Cooling and Heating 1500 LF Thermal Storage Tank sized for load level of 2 MSF (850,000 gal, 60'D, 40'H 9,300 Tonhr@16 FdT)

Plant Site



Lake water cooling- UTES Seasonal Energy Storage

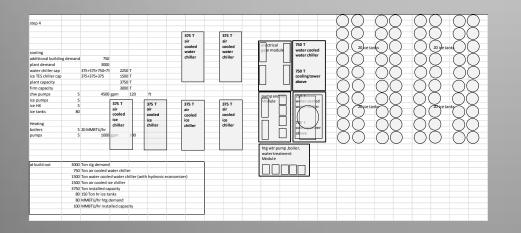
Examples: Alderney 5 Nova Scotia Ft. Benning GA UTES to Semper supply heat exchanger

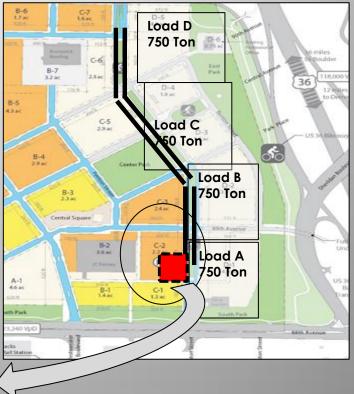
Taken off-line at Max water to storage at 45 F Annual potential cooling energy 4.8 M Ton hr

Fundamental Problem: Space

Local

Concept: Minimize upfront infrastructure costs by minimizing underground utility piping and installing heating and cooling capacity in discrete modules. Reduce energy cost with load leveling Thermal Ice Storage


Assumes: Adequate space is available in proximity of Phase 2 loads (parking deck?)


Pros:

- Piping size and extents limited to Phase 2 service only
- Invest in modular H/C plant only as load develops

Cons:

- Space for plant and TES: on site real estate value
 - Plant: 75 x 100 ft : 7,500 SF
 - Storage (at buildout) 5,000 SF (stacked)
- Cost reduction limited by ice production efficiency kW/Ton
- Cost of Components

Financial Modeling Assumptions: all options

Assumes

Third party purchase/install the piping distribution and thermal storage tank. These costs are not included in financial models.

Other assumptions:

Year beginning	2019
Model duration (ROI horizon)	20 years
Energy cost escalation	3%
Inflation	5%
Cost of borrowing (private developers)	8%
Cost of Capital private sector	15%
Growth of PH II development (after build out)	2%

District Energy Screening Tool Results

Life Cycle Cost: Net Present Value

	Stand Alone	District Energy	District Energy + CHP
** Project Capital Distribution (Chilled Water/ Hot Water Pipe)	\$0	-\$3,761,427	-\$3,761,427
Project Capital Equiptment (Chillers, Boilers, Pumps, etc)	-\$3,918,545	-\$1,748,782	-\$1,748,782
Project Capital CHP (Combined Heat and Power Generator)	\$0	\$0	-\$212,997
Total Project Capital (Distribution + Equiptment + CHP)	-\$3,918,545	-\$5,510,209	-\$5,723,206
Operation Cost (NG + Electricity + Building Operator)	-\$33,043,128	-\$25,358,799	-\$24,752,621
** Project Capital + Operation Cost	-\$36,961,673	-\$30,869,008	-\$30,475,827
Total Life Cycle Cost Net Present Value (Lower Number = More Attractive)	-\$17,051,445	-\$15,219,369	-\$15,146,713

** Includes Debt Service

GLHN ARCHITECTS & ENGINEERS, INC.

Developer Benefits

Initial developer capital cost savings -

Averaged annual operating cost savings-

Potential increased leasable SF-Potential increased leasable SF total

100,000 GSY Example (current \$)

Developer initial capital cost savings -Reduced Debt Service-

Averaged annual operating cost savings-

Potential increased leasable SF-Based on 4.5% Cap Rate (increased value) \$0.45-\$0.55/SF/YR

%2 45,000 GSF

\$6.00/SF

\$600,000 \$45,550/yr

\$55,000/yr

2,000 SF \$3,560,000

District Energy Screening Lessons Learned

- Examine district energy concepts early
- Every situation is unique-Test the edges
- Accelerate build out
- Explore split financing
 - Underground piping
 - Plant Construction
- Early screening is as much an education tool as a financial calculator