

University of Minnesota

- Established in 1851 in the Twin Cities (Minneapolis and St. Paul)
- Minnesota's flagship, land grant university
- 18 major colleges
- 30,500 undergraduate students study on the Twin Cities campus
- 16,300 graduate and professional students
- 7,000 international students, from 135 countries

University of Minnesota Existing Steam Plant Infrastructure

Two Separate Steam Plants

- Southeast Plant
 - Sole steam production facility
 - 4 boilers
 - Gas, coal, No.2 fuel oil
 - 1 steam backpressure turbine (16 MW)
- Saint Paul Plant
 - 6 boilers
 - Gas, coal, No.2 fuel oil
- Two separate distribution systems

University of Minnesota Southeast Plant Infrastructure

Boiler/STG	Туре	Age	Conditions	Capacity (pph)	Fuel(s)
SG-201	Fluidized Bed	2000	900 psig 900 F	200,000	Gas/Coal
SG-202	LP Package	2000	265 psig 420 F	250,000	Gas/No.2
SG-203	HP Package	2000	900 psig 900 F	200,000	Gas/No. 2
Boiler 4	Stoker	1948	440 psig 600 F	80,000	Coal
TG-101	Back Pressure STG	2000	900 psig 200 psig	16 MW Net	Steam

University of Minnesota Southeast Plant - Flow Diagram

University of Minnesota St. Paul Plant Infrastructure

Boiler/STG	Туре	Age	Conditions	Capacity (pph)	Fuel(s)
No. 1	Pulverized Coal	1956	150 psig Saturation	25,000	Gas/Coal
No. 2	Pulverized Coal	1956	150 psig Saturation	25,000	Gas/Coal
No. 5	Stoker	1970	150 psig Saturation	60,000	Gas/Coal/ No. 2
No. 6	Stoker	1978	150 psig Saturation	60,000	Gas/Coal/ No. 2
No. 7	LP Packaged	1991	150 psig Saturation	80,000	Gas/No. 2
No. 8	HP Packaged	1999	265 psig Superheated	250,000	Gas/No. 2

University of Minnesota St. Paul Plant - Flow Diagram

University of Minnesota System Challenges

- From the Operations & Maintenance perspective:
 - The campuses are 5 miles apart
 - Fuel flexibility creates challenges:
 - Natural gas is the primary fuel
 - Coal and No. 2 Fuel Oil are back-up fuels
 - Potential for natural gas curtailment (non-firm)
 - Coal is also limited by environmental permits (30%)
 - Coal use is managed accordingly
- Plant operations are executed with the University's long term best interest in mind.....

University of Minnesota Recent History

- Long Range Planning has led to recent accomplishments:
 - Existing Steam Plant efficiency evaluations
 - (Boiler tests, meter upgrades, control system optimization)
 - Refined dispatch models for boilers
 - For all seasons, load profiles, and fuel choices
 - Controls upgrade projects in planning stages at both plants to support integration with the CHP Plant
- ... and led the way for the current path ...

University of Minnesota CHP Project

CHP Plant Description

- GE LM 2500
 - Dual fuel
- EIT HRSG with duct firing
 - 90,000 pph on LM 2500
 - 250,000 pph with duct firing
 - · 200 psig/400 F
- Economics
 - \$7 million annual savings
 - \$176 million over 30 year horizon
 - Partially shields university from increased electric rates
- Sustainability
 - 10-13% reduction in carbon footprint

University of Minnesota CHP Project – Environmental Benefits

University of Minnesota CHP Project – Project Team

Jacobs Engineering

- Project Engineer
- Commissioning and Startup Plan

Adolfson & Peterson Construction

CM at Risk

University of Minnesota

Veolia

- O&M Operations
- Startup Support
- Procurement Reviews

Major Equipment Suppliers

- GE LM 2500
- EIT HRSG

University of Minnesota CHP Project – Project Site

University of Minnesota – Key Performance Indicators System Pressure Maintenance

KPI(s)

 Less than 4 preventable pressure drops per plant (< 90% of system rated pressure)

- Updated P&IDs, as built drawings, equipment numbering
 - Much of the work being performed by University engineering students
- Maintaining N+1 redundancy on most major equipment
 - Major equipment is spared and planned maintenance is well scheduled
- Responsive controls and monitoring systems
 - Upgraded controls with common systems
 - Cross-trained operators
 - The ability to monitor the CHP and SE Steam Plant from each control room

University of Minnesota – Key Performance Indicators Plant Maintenance

- KPI(s)
 - Critical Asset Maintenance Plan within 6 months of taking over
 - 90% on-time completion rate of Critical Asset Maintenance
- Action Plan
 - Utilizing Maximo to execute outages efficiently

University of Minnesota – Key Performance Indicators Key Equipment Availability

KPI(s)

- Veolia to conduct a material assessment of existing equipment within 6 months
- 95% availability of boilers, generators and air compressors

- Maximo efficiently planning scheduled maintenance
- Stocking needed spare parts
- Scheduling equipment outages effectively
- Utilize OEM and Veolia Technical resources

University of Minnesota – Key Performance Indicators Plant Operational Efficiency

KPI(s)

- Veolia will complete a plant efficiency review with 6 months of taking over
- Veolia will propose an operational profile for University approval that establishes a plant dispatch profile and theoretical operational profile
- Maintain overall plant efficiency within 15% of theoretical values

- Phase 1 of the plant efficiency plan is complete with dispatch profiles and energy conservation improvements
- Control system upgrades are underway
- Defining dispatch based on season loads
- Plant energy and utility reports are issued monthly

University of Minnesota – Key Performance Indicators Safety and Housekeeping

KPI(s)

- Maintain an acceptable level of cleanliness based on walkthroughs by a University Representative, the Plant Manager and Veolia Representative
- Maintain a reportable injury rate at no more than 4 per calendar year for both plants

- EH&S polices are thoroughly enforced including ongoing training opportunities
- Cleanliness is practiced and embraced
- Root Cause Analyses (RCA) are performed as needed

University of Minnesota – Key Performance Indicators Operational Analysis

KPI(s)

- Veolia will conduct an event critique for each unplanned event that results in a reportable safety infraction and any reduction in pressure to less than 90%
- Same critique for any event as agreed to between Veolia and the University

- Maintain stand by equipment in ready condition to minimize startup
- Control system upgrades
- Common control architecture at all plants to facilitate cross training
- Backup fuel systems ready in case of curtailment or supply loss

University of MinnesotaIntegrating Future Infrastructure

- Integrating the New CHP Plant enhances:
 - The intention is to operate the CHP plant to the greatest extent practical
 - Dispatch planning incorporates
 - Seasonal load profiles
 - Fuel choices
 - Enhanced reliability
 - Timely execution of planned maintenance activities
 - Economics
 - Controls upgrades at the SE and St.Paul plants promote improved interface between plants, data gathering, and efficiency
 - Cross training O&M staff provides operating flexibility as well as staff growth and satisfaction

University of Minnesota Integrating Future Minneapolis Campus Infrastructure

Existing Capacity:

Future Capacity, (with CHP):

Boiler	Steam Capacity	Boiler	Steam Capacity
SG-201	200,000 pph	SG-201	200,000 pph
SG-202	250,000 pph	SG-202	250,000 pph
SG-203	200,000 pph	SG-203	200,000 pph
Boiler 4	80,000 pph	Boiler 4	Retired
		HRSG-fired	250,000 pph
Total	730,000 pph		900,000 pph

Generators	Electricity	Generators	Electricity
BP ST-Gen, G-101	16 MWe	BP ST-Gen, G-101	16 MWe
		GE LM 2500	22 MWe
Total	16 MWe		38 Mwe

University of Minnesota – Future Infrastructure

University of Minnesota – Future Infrastructure

University of Minnesota Questions

Name	Title	Email	Phone
Tom McCarthy	Director of Sales	thomas.mccarthy@veolia.com	(603) 715-7797
Matthew Duffy	Director of Sales	matthew.duffy@veolia.com	(713) 447-4097
Gary Wilkinson	Director of Energy Structuring	gary.wilkinson@veolia.com	(312) 519-7437