

Energy Services Acquisition Program (ESAP) in Ottawa – Case Study

Presentation Workshop 2: Governance Models and Success Strategies for Developing Thermal Grids

Presented by Tomasz Smetny-Sowa, Senior Director, ESAP June 26, 2017

> Real Property Services Branch Public Services and Procurement Canada

Program Overview

Energy Services Acquisition Program (ESAP) is modernizing the District Energy System (DES) which provides heating and cooling services to over 80 federal buildings in the National Capital Region (>1.6M m² of floor space), accommodating 55,000+ occupants

Goals & Objectives:

- Reduce Greenhouse Gas (GHG) emissions
- Reduce Costs
- Increase Safety & Reliability
- Leverage Private Sector's Innovation & Expertise

ESAP and Key Government Priorities

The ESAP modernization will help the Government of Canada to meet the following commitments:

- Paris Agreement committing Canada to reducing GHG emissions by 30% by 2030
- Federal Sustainable Development Strategy and Greening
 Government committing to lead by example by greening government
 operations and reducing emissions in government buildings and fleets by
 40% by 2030 at the latest
- Pan-Canadian Framework on Clean Growth and Climate Change committing to move toward smart and sustainable buildings that use less energy and open the way for using renewable energy sources

The Value Proposition

- Modernization will achieve significant GHG reductions
- The DES will operate at a lower cost because the current system:
 - uses outdated steam-based technology that is inefficient and expensive to operate and maintain
 - has many components that are well past their expected life spans
 - is 25% less efficient than what industry can achieve
- It will generate savings estimated at \$750 million over 40 years
- It will also meet a government commitment to eliminate use of ozone-depleting substances.

Inside Cliff heating and cooling plant

The Plan

First stage – Modernization

- Convert to industry-standard low temperature hot water technology (LTHW)
- Switch from steam to electric chillers
- Implement Smart Buildings data analysis to improve efficiency
- Test new carbon neutral fuels for deeper greening pilot projects, feasibility studies

Second stage – Deeper Greening and Expansion

- Convert base load to carbon neutral fuels achieve low carbon government
- Double the number of government buildings on the system
- Expand and share carbon neutral energy with non-GOC buildings in the community

Tunnels under Cliff heating and cooling plant

Our Network and Future Expansion

- Existing PWGSC DES locations
- Potential DES
 Growth and
 Expansion
- Other DES currently in operation (University of Ottawa, Carleton University, local hospitals)

GHG Reduction Profile - All Actions

- By 2030 GHGs will be reduced to less than 10% of our 2005 baseline emissions if we implement stages 1 and 2
- The estimated reductions by category are listed here

Selecting the Right Procurement Model

- DES projects are delivered worldwide through a variety of governance / business / procurement models and each one is developed within unique regulatory frameworks and business requirements
- In determining the procurement model, the sponsor needs to consider:
 - The preferred role of the sponsor in developing and operating the DES
 - The preferred risk allocation between the sponsor and the private sector
 - The regulatory framework
 - The contractual flexibility and sponsor's constraints
 - Existing infrastructure and diversity of client portfolio

Options for DES Procurement Models

	Governance model	Ownership	Operated	Commercialization
100% Public	Government owned	Public sector	Public sector In-house or outsource O&M	Public sector
	Public Private JV	Co-ownership: public and private	Shared responsibilities	Co-owned entity
Hybrids	Split asset	Distribution: non-profit Plants: Private sector	Non profit company In-house or outsource O&M	Non profit company
	P3 DBFOM	Public or private sector	Private sector	Public or private sector
100% Private	Privately owned, Non-profit	Non profit company	In-house or outsource O&M	Non profit company
7 7	Privately owned	Private sector	Private sector	Private sector

Looking at DBFOM (Design, Build, Finance, Operate and Maintain)

- P3 contracts are comprehensive agreements with greater risk transfer to the private sector and typically include all phases of an asset:
 - Design and construction
 - Operations and maintenance
 - Financing
- P3s are fixed price performance based contracts, payments are made based on availability and alignment with technical and performance requirements

Looking at DBFOM (Design, Build, Finance, Operate and Maintain)

- The private capital at risk (project financing, debt and equity) provides additional due diligence and oversight on the project and anchors the risk transfer to the private sector
- In Canada, the public sector usually retains the ownership of the asset, however there are many DES P3s where ownership was transferred until the end of the contract term

Confederation Heights Plant

Benefits and Disadvantages of DBFOM for ESAP

Benefits

- The private sector assumes the risk (as long as the project does not change)
- Additional oversight from lenders
- Integration of O&M needs into design
- Cash up front

Disadvantages

- Higher cost of financing
- With any changes to the scope triggers negotiations to the contract and possibility that the risk reverts back to the Government of Canada

The ESAP Procurement Choices

- The delivery model will be one contract for energy modernization (Stage 1) a
 DBfOM
 - It is a single P3 project agreement with a duration of 35+ years
 - DB = design build and this phase will take seven years
 - f = finance and only the design build phase will be financed
 - OM = operations and maintenance and it will go until 2055
- Two other important components are delivered outside of the P3
 - Smart Buildings implementation is a joint contract with another government entity National Research Council (NRC)
 - Individual Building Conversion is a Design, Bid, Build (DBB) with contracts for each building

Exciting Models are an Inspiration for ESAP

Across the world we are seeing exciting new models for heating and cooling - ESAP will be a model for others once completed

Amager Bakke incineration plant in Copenhagen, Denmark

Exciting Public Architecture - Spittelau Waste Incinerator, Vienna

Efficient Installation Will Minimize Disruption

The installation of piping infrastructure is quick and efficient with public spaces affected for less than a week

Pre-insulated piping being installed

Rapid infrastructure installation in Copenhagen, Denmark

Canada

Thank You

Tomasz Smetny-Sowa Senior Director **Energy Services Acquisition Program** Public Services Procurement Canada tomasz.smetny-sowa@tpsgcpwgsc.gc.ca

