University of Illinois Utility Master Plan and Dispatch Model

Presented by: Mike Larson, University of Illinois Andy Price, Affiliated Engineers, Inc. Aaron Wickersham, Affiliated Engineers, Inc.

International District Energy Association Campus Energy 2017 February 20-24, 2017

University of Illinois, Urbana - Champaign

- Abbott Power Plant (APP)
 - 760,000 pph steam production
 - 89 MW electric production
- APP generates 275,000 MWH or roughly 50% of campus electricity
- APP produces electricity at a carbon dioxide rate of 0.87 lb/kWh
 - Below EPA standard of 1.0 lb/kWh
 - Under the MACT limits by factor of 15
- New 5.8 MW photovoltaic facility
- DOE Large Scale Testing of Post-Combustion Carbon Capture Technology

ABB

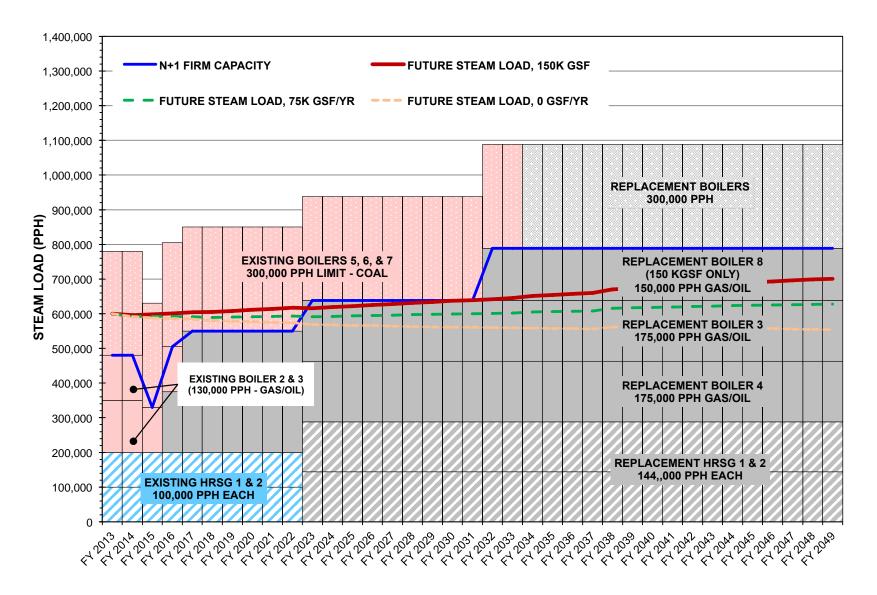
- Distributed Central Chilled Water System
 - Six plants producing 58,400 tons chilled water
 - Thermal energy storage
- Energy consumption dropped more than 24% since 2007

Utilities Production and Distribution Master Plan

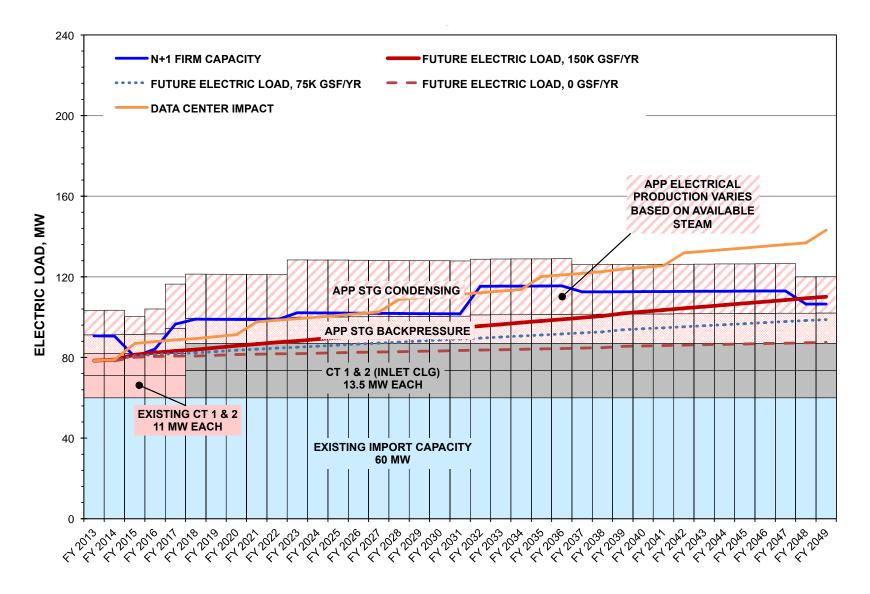
Utility Master Plan Approach


- Detailed Condition Assessment
- Modeling
- Multiple Loading Scenarios
- Initial Screening Analysis
- Stakeholder Involvement
- Detailed Optimization

IDEATION SCREENING TECHNICAL VERIFICATION ACTUAL PERFORMANCE


Screening

Method


Chilled Water Capacity Vs Future Load

Steam Capacity Vs Future Load

Electrical Capacity Vs Future Load

Future System Global Approaches

- Theme 1 Options NG (with oil backup) and continued power production
- Theme 2 Options NG as primary fuel and no power production
- Theme 3 Options NG as primary fuel with partial renewables
- Theme 4 Options Full renewables and alternative fuels

	LIFE CYCLE COST SUMMARY (\$ MILLIONS)															
		DESCF	RIPTIO	N	NO CAMPUS GROWTH					150,000 GSF/YEAR GROWTH						
	ABBOTT PP				\$0 PER TO	ON GHG	\$10 PER T	ON GHG		\$0 PER TO	ON GHG	\$10 PER TON GHG				
OPT. NO.	COAL	GAS	BIO	NEW PLANT	PV CAPEX	TOTAL PRESENT VALUE	TPV BAU DIFF.	TOTAL PRESENT VALUE	TPV BAU DIFF.	PV CAPEX	TOTAL PRESENT VALUE	TPV BAU DIFF.	TOTAL PRESENT VALUE	TPV BAU DIFF.		
BAU	•	٠			269	1,704		1,769		288	1,842		1,919			
1.1		٠			221	1,638	(66)	1,694	(75)	236	1,767	(75)	1,835	(84)		
1.2		•		СНР	250	1,720	16	1,768	(1)	255	1,825	(17)	1,884	(36)		
1.3		•		BLR	226	1,663	(41)	1,719	(50)	230	1,780	(62)	1,849	(70)		
2.1		٠			212	1,820	116	1,902	133	223	1,951	109	2,047	127		
2.2		•		BLR	216	1,826	123	1,908	140	216	1,946	104	2,041	122		
2.3				CBLR	454	2,124	421	2,203	435	454	2,277	435	2,368	449		
3.1			•		294	1,726	22	1,779	10	305	1,846	4	1,909	(10)		
3.2		•		HRC	266	1,673	(30)	1,729	(39)	281	1,817	(25)	1,884	(35)		
3.3		٠		WIND	299	1,725	22	1,777	8	314	1,853	11	1,916	(3)		
3.4		٠		PHV	413	1,851	147	1,906	137	428	1,976	134	2,043	124		
3.5		٠	•		274	1,793	89	1,842	74	285	1,924	82	1,984	65		
4.1			٠		265	2,004	300	2,047	278	273	2,137	295	2,189	270		
4.2				GHRC	468	1,912	208	1,993	224	476	2,058	215	2,149	230		

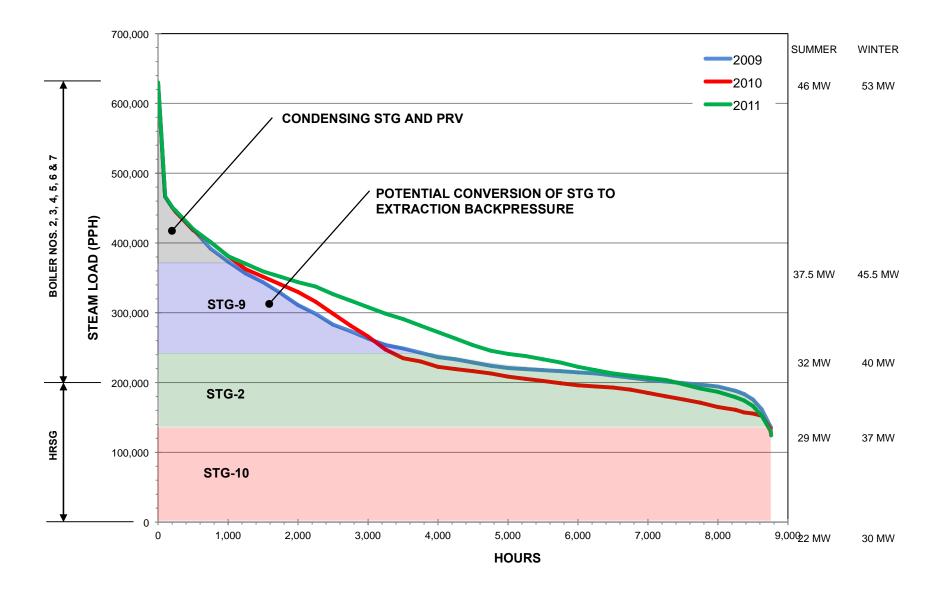
NOTES: 1. CHP - COMBINED HEAT AND POWER

BLR - BOILERS

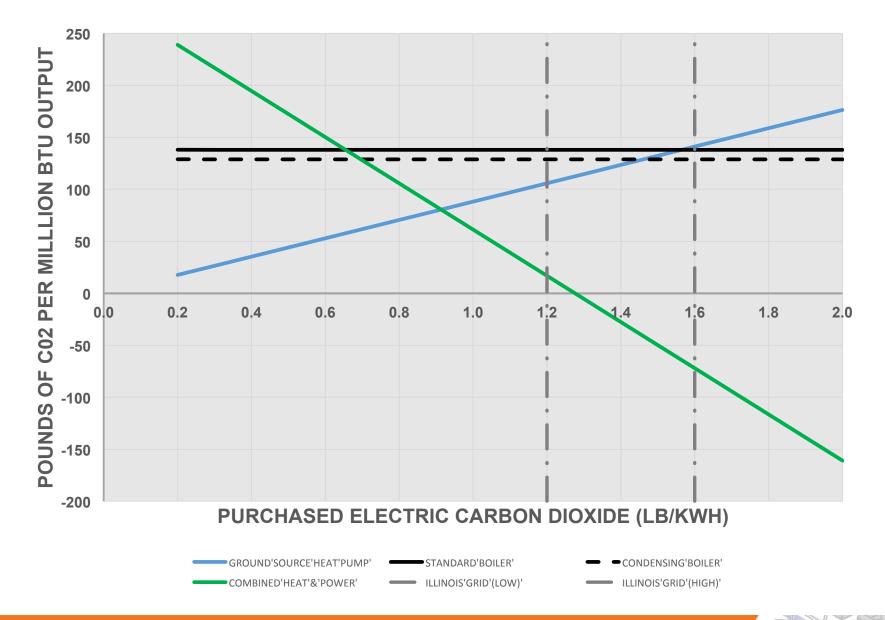
CBLR - BUILDING CONDENSING BOILERS

HRC - HEAT RECOVERY CHILLERS

GHRC - GEOTHERMAL HEAT RECOVERY CHILLERS


PHV - PHOTOVOLTAIC SOLAR

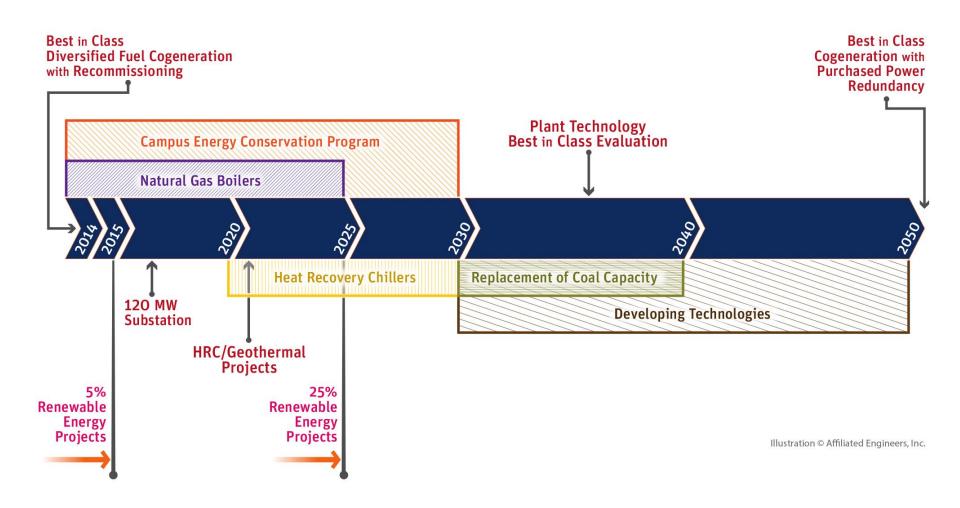
PV - PRESENT VALUE


TPV - TOTAL PRESENT VALUE

GHG - GREEN HOUSE GAS

APP Steam Production Curve

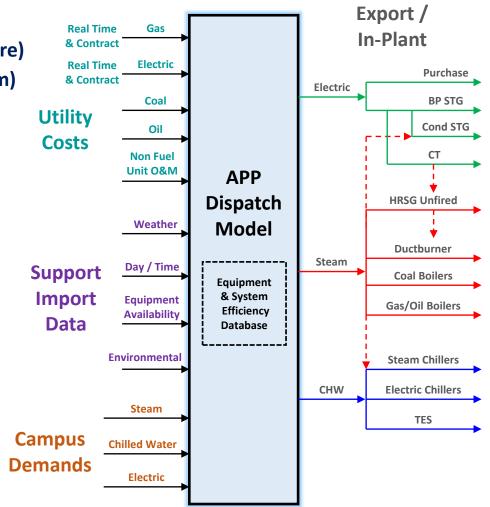
Carbon Footprint for Various Heating Technologies



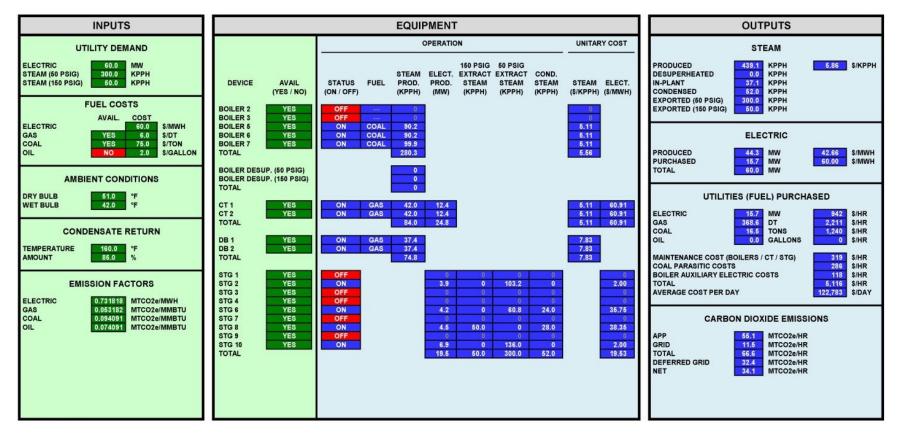
Utility Master Plan Recommendations

- Increase campus electrical import to 120 MW
- Install three new gas/oil superheated steam boilers
- Install additional backpressure steam turbine generator capacity
- Commit to net zero GSF growth
- Continue with best-in-class diversified fuel cogeneration
- Apply heat-recovery-chiller technologies
- Develop renewable energy projects
- Re-evaluate APP technologies before 2030

Implemented Projects

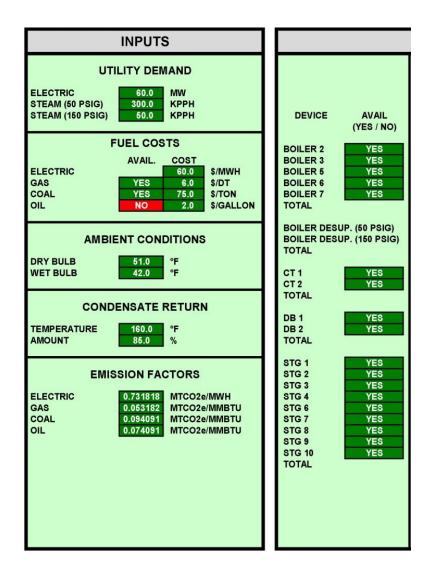

		UNIVERSITY OF ILLINOIS - URBANA CHAMPAIGN															
				OPTION 1.1	INFRAS	STRU			ROVE RSITY C							ст со	STS in 20
SYSTEM	NO.	DESCRIPTION					TOTAL COST (\$)		2014 (\$)					2017 201 (\$) (\$)			2019 (\$)
STEAM	H-1	AN	CILLA	RY EQUIPMENT REPAIRS		3,375,	,000	750,000 750,000		650,000		125,000) 6	00,000	500,000		
	H-2	AD	DITIO	NAL BP STG		4,660,	,000	4,		50,000							
	H-3	REI	PLACE	EMENT OF HRSG 1 AND 2		27,228,	,000										
	H-4	тні	RD GA	AS BOILER		9,500,000					9,500,000						
	H-5	со	MBUS	TION TURBINE INLET COOLING		1,250,	,000							1,250,000			
	п с -							AAA	4 4 2 <u>6.</u> 000	1 _ 1	<u>ve o</u> 0	2 <u>6</u> 05	onn	105.000	3,002,000	<u>ve o</u> ŭv	2 420 000
			C-8	ASCP CODE AND LIFE SAFETY	32,000			18,00	0 7,000							7,000	
			C-9	CLSCP REPLACEMENT CHILLERS/TOWERS	8,506,000	1,742,000	1,742,000	5,022,00	0								
			C-11	CLSCP CODE AND LIFE SAFETY	22,000			11,00	0							11,000	
			C-12	VMCP REPLACEMENT CHILLERS/TOWERS	4,459,000			576,00	0		1,159,000				2,724,000		
			C-14	VMCP PIPING/PUMP UPGRADES	65,000				65,000								
			C-15	VMCP CODE AND LIFE SAFETY	6,000			6,00	0								
			C-16	TES PRESSURE SUSTAINING VALVE MODIFICATIONS	50,000	25,000	25,000										
			C-17	UPGRADE PORTIONS OF DISTRIBUTION PIPING	850,000		400,000	150,00	0 150,000	150,000							
				SUBTOTAL	39,972,000	3,495,000	4,170,000	12,727,00	0 222,000	150,000	1,159,000	3,002,000	1,589,000	4,271,000	9,020,000	167,000	
		ELECT.	E-1	MV DISTRIBUTION EQUIPMENT	9,509,000		1,694,000	391,00	0 496,000	761,000	391,000	939,000	783,000	1,172,000	2,190,000	692,000	
			E-2	MV DISTRIBUTION CABLING	5,533,000		695,000	695,00	0 695,000	695,000	695,000	411,600	411,600	411,600	411,600	411,600	
			E-3	HV TRANSFORMERS, CIRCUIT BREAKERS, RELAYS	927,000						927,000						
			E-4	INCREASE IMPORT CAPACITY TO 120 MW	16,287,000				8,287,000	8,000,000							
				SUBTOTAL	32,256,000		2,389,000	1,086,00	0 9,478,000	9,456,000	2,013,000	1,350,600	1,194,600	1,583,600	2,601,600	1,103,600	
		OTHER	0-1	ENERGY EFFICIENCY PROGRAM	22,000,000	2,000,000	2,000,000	2,000,00	0 2,000,000	2,000,000	2,000,000	2,000,000	2,000,000	2,000,000	2,000,000	2,000,000	
			0-2	RENEWABLE ENERGY PROJECT/PURCHASE	5,500,000	500,000	500,000	500,00	0 500,000	500,000	500,000	500,000	500,000	500,000	500,000	500,000	
				SUBTOTAL	27,500,000	2,500,000	2,500,000	2,500,00	0 2,500,000	2,500,000	2,500,000	2,500,000	2,500,000	2,500,000	2,500,000	2,500,000	
			TOTAL 178,040,000			8,427,250	17,273,850	32,857,85	0 15,129,850	16,203,600	10,744,600	10,077,400	7,425,400	10,496,400	43,491,400	5,912,400	

OPTION 1.1 INFRASTRUCTURE IMPROVEMENT SCHEDULE (TOTAL PROJECT COSTS in 2014 dollars)


Dispatch Model

UIUC Dispatch Model

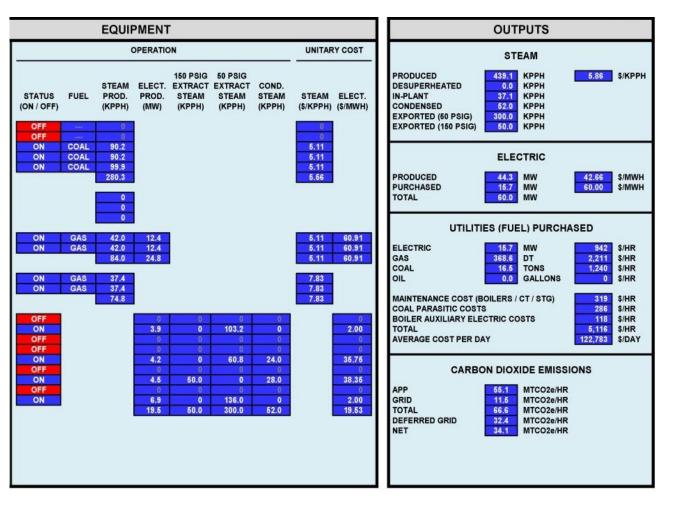
- Two models were developed:
 - TOPS (Thermal Optimization Plant Software)
 - CHAMP (Chiller Activity Modeling Program)
- Mission:
 - Assist in Operational Decisions
 - Reduce Annual Operating Costs
- Phase 1:
 - Model Point in Time Operation
- Phase 2:
 - Incorporate Real Time Utility Pricing
 - Real Time Utility Demands



TOPS User Screen

- User Friendly
- Real Time Calculations
- Input and Output on Same Screen

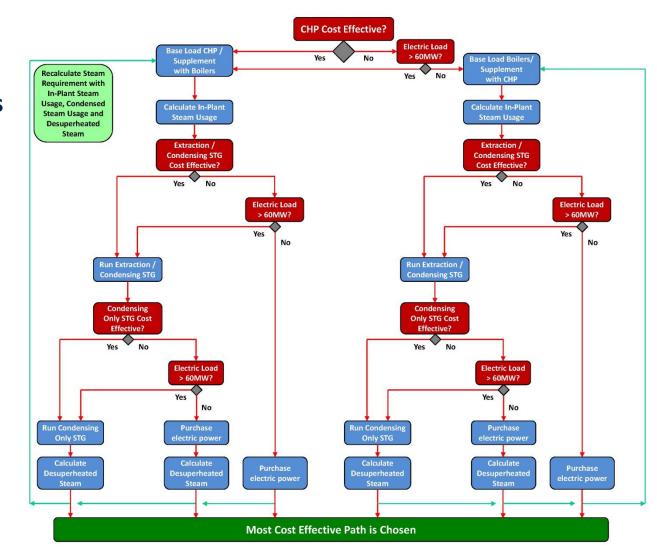
TOPS Input Screen



Input Data:

- Utility Loads
- Fuels Costs and Availability
- Ambient Conditions (Combustion Turbine)
- Condensate Return (In-Plant Steam Usage)
- Emission Factors (EPA Based Data)
- Equipment Availability

TOPS Output Screen

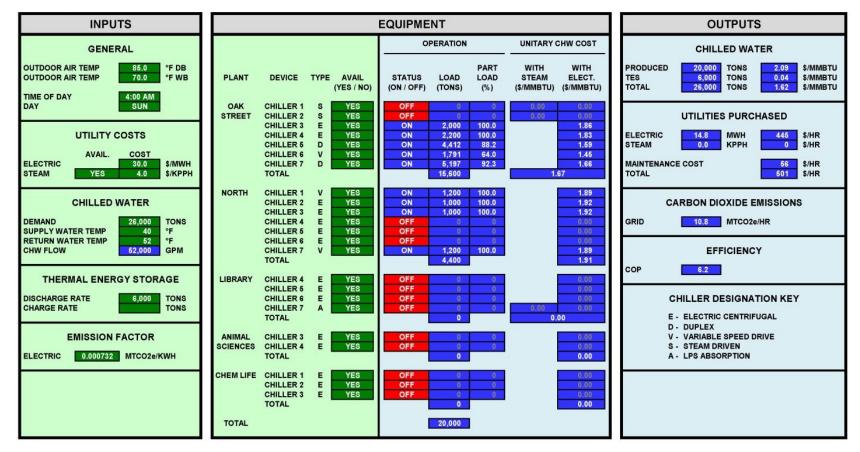


Output Data:

- Most Cost Effective Plant Operation
- Individual Equipment:
 - Steam and Electric Production
 - Unitary Costs
- Total Plant:
 - Utility Generation
 - Utility / Fuel Purchase
 - Hourly and Daily Costs
- CO₂ Emissions
 - Plant Output
 - Purchased / Deferred Utility Electric
 - Net Emissions

TOPS Logic Diagram

- Compares Several Operational Scenarios
- Detailed Part Load Modeling of Components
- Multiple Iterations of Calculations
- Overrides:
 - Maximum Import
 of 60MW
 - Fuel Availability



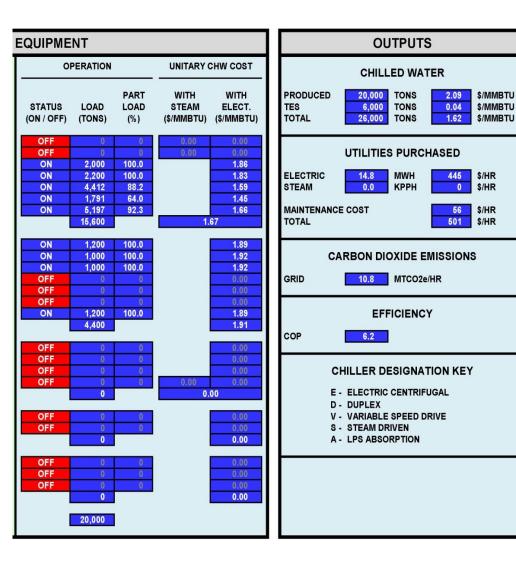
TOPS Carbon Emission Sensitivity

- Most Cost Effective Operation May Not Result in Least Amount of Carbon Emissions
- Alternate Approach is Provided with Reduction in Carbon Emissions
- Particularly Useful if Carbon Tax is Implemented

CARBON DIOXIDE EMISSIONS										
APP GRID TOTAL DEFERRED GRID NET	40.8 36.0 76.8 7.9 68.8	MTCO2e/HR MTCO2e/HR MTCO2e/HR MTCO2e/HR MTCO2e/HR								
POTENTIAL W/ ON-SITE POWER GENERATIONNET39.8DIFFERENTIAL29.0MTCO2e/HR										

CHAMP User Screen

- Similar Design
- Real Time Calculations
- Input and Output on Same Screen


CHAMP Input Screen

Input Data:

- Ambient Conditions (Cooling Tower Performance)
- Fuels Costs and Availability
 - Steam Cost Developed from TOPS
- Chilled Water Load and Temperatures
- Thermal Energy Storage
 - Independent Program was Previously Developed
 - Can be Integrated in CHAMP in Phase 2
- Emission Factors (EPA Based Data)
- Equipment Availability

CHAMP Output Screen

Output Data:

- Most Cost Effective Plant Operation
- Model Includes Chiller, Cooling Tower and Pump Performance
- Hydraulic Modeling was Utilized to Determine Plant Staging
- Individual Equipment:
 - Chilled Water Production
 - Unitary Costs
- Total System:
 - Chilled Water Generation
 - Utility Purchase
 - Hourly Costs
- CO₂ Emissions

Questions?