IDEA Campus Energy 2017

Resiliency and Efficiency: Optimizing the Integration of CHP into an Urban Academic Medical Campus

Introduction to NYULMC

NYU LANGONE MEDICAL CENTER

World-Class Patient-Centered Integrated Academic Medical Center

- Founded in 1836
- 11-acre campus created by the City of New York and deeded to New York University Medical Center in 1949
- Mission: Clinical Care, Research, Education
 - 1,069 licensed beds
 - \$280+ million in research grants
 - 650 medical students
- 5.1 million SF (2.3 million on main campus)
- Over 2 million SF added since 2010
- Another 3.5 million SF will be added through 2020 (including Brooklyn Campus)
- Ranked #10 Hospital and #11 Medical School by US News and World Report
- Ranked #1 for overall patient safety and quality by UHC

Off-Campus Facilities:

- Clinical
- Wet Research
 - Dry Research
- Administration
- Education

NYULMC Main Campus

- 2.3 MM SQFT with 1.2 MM SQFT under construction
- 11 Connected Buildings, Built From 1950's to present
- 3 Electric + 1 Steam Turbine Chiller Plant

Campus Transformation

ENERGY BUILDING (2016)

- · New Con Edison Electric Service
- 7.5 MW Emergency Power Plant
- 10.5 MW Cogeneration Plant
- Standby boilers to provide 100% onsite steam
- Radiation Oncology
- Loading docks

KIMMEL PAVILION (2018)

- 830,000 SF new, high acuity clinical facility (374 beds, 32 OR/Procedure rooms)
- 7.5 MW Emergency Power Plant
- 3 MW Cogeneration Plant
- LEED Platinum goal

SCIENCE BUILDING (2017)

- 365,000 SF
- New laboratory, vivarium and conference facilities
- 6 MW Emergency Power Plant
- LEED Platinum goal

Energy Building

Energy Building Plant Equipment

- Solar Taurus 70, 7 MW Nominal Gas Turbine
- 130,000 lb/hr HRSG
- 2.5 MW Steam Turbine (added after Superstorm Sandy)
- 2 X 115,000 lb/hr Low Pressure Backup Boilers
- 3 x 2.5 MW Diesel Backup Generators
- 30 kVA ConEd High-Tension Service
- 300 HP Gas Compressor

Energy Building – Equipment Delivery

Energy Building – Gas Turbine, HRSG & Boilers

Energy Building – Emergency Generators & Switchgear

Why Cogeneration?

- Energy Operating Cost Savings
- Integration into Transforming Campus
- Sustainability / Reduced Carbon
- Resiliency

Resiliency - Hurricane Sandy

October 29, 2012,
Hurricane Sandy storm
surge devastates low
lying portions of NYC
with a storm surge of
13.88 feet at Battery
Park; previous record
was 11.2 feet set in 1821.

Sandy Impacts - NYULMC

- Utility services disrupted
- Patients evacuated
- Research lost
- Hospital reopened on 12/26/2012

Electromagnetic Field Authorized Personnel Only

PELIGRO

Campo Electromagnetico Personal Autorizado Solamente

The power of the MR magnet is ALWAYS ON

Sandy Recovery Effort

SITE LOGISTICS PLAN

Enhancing Resiliency Going Forward

- Flood Protection
- Elevating Critical Utility Systems
- Elevating Critical Programs and Support Functions
- Utility System Redundancy

Perimeter Protection

Perimeter Protection

Temporary Protection

Flood Gate at Loading Dock

Permanent Flood Walls

Infrastructure Protection

Elevating Critical Systems

Utility Resiliency

Pre-Sandy Power Systems

Planned Power Systems

Operational Challenges/Lessons Learned

- Thermal Sizing Challenges
- New Utility Tariffs
- Cost Modelling
- Optimization of Inlet Air Temperatures
- Fuel Switching Optimization

Thermal Sizing

Utility Tariff Changes

Utility	Old Model	New Model
Electric	Flat rate commodity, monthly demand, variable T&D.	Day-ahead commodity, contract and asused daily demand (no ratchet), no T&D. Virtual offset of other accounts.
Natural Gas	Minimal Use (Kitchen Only)	Fixed price interruptible for CHP, market price firm for boilers
District Steam	High rates, monthly demand in winter only	High contract demand, reduced rates, tertiary backup only
Chillers (Steam & Electric Drive)	Lead with electric, peak shave with steam	Lead steam during demand period, lead electric off-peak.

Cost Modelling

- Design engineers often calculate savings using blended rates instead of true marginal costs
- Many recommendations conclude that running flat out 24/7 is optimal
- Significant opportunity to reduce utility spend by tailoring plant operations to conditions and energy prices
- Using true marginal rates for CHP analysis is key

Inlet Temp Optimization

- Power and Heat Rate are Determined by Inlet Temp (T1)
- Colder T1 = More Gas Consumption, More Power, Less Heat Per Therm of Gas
- 600 Ton Cooling Coil on Inlet
- Optimize Based On Electric Prices, Demand, and Chiller **Plant Status**

Chiller Plant Optimization

Chiller Fuel Switch Optimization

- 3 x 2000 Ton York Steam Turbine Driven Centrifugal Chillers
- 8-10 lbs Steam/Ton Hour = ~1.2 COP

Skirball Chiller Plant

- 3 x 1200 Ton York Electric, 1 w/VFD
- COP > 6
- · As Used Daily Demand
- Receives Virtual Offset from CHP

Smilow Chiller Plant

- 3 x 1200 Ton York Electric Chillers
- COP > 6
- Separate Electric Account
- Monthly Demand
- No Offset

Fuel Switch Optimization

Fuel Switch Optimization

NYU Langone
MEDICAL CENTER

Fuel Switch Optimization

