

High Temperature Polyethylene (PE-RT) Thermal Distribution Application

Overview Design Installation

Overview

Design Installation

Company Formation

From Cradle to Pipe

PE-RT Pipe Sizes & Pressure Rating

Solid Wall Conventional Extrusion OD Controlled Process

- Iron Pipe Size (IPS): 2" 54"Standard Dimension Ratios (SDR's)
 - DR 7.3 to DR 32.5
 - Pressure Rated up to 180°F

SDR	PR @ 73°F	PR @ 180°F	
7	333	167	
9	250	125	
11	200	100	
13.5	160	80	
17	125	63	
21	100	50	
26	80	40	
32.5	63	32	

What is Polyethylene?

Thermoplastic

- Plastic that can be repeatedly softened by heating and hardened by cooling
- Process is reversible and repeatable
- Retains all physical properties

Semi-Crystalline Polymer

- Molecules pack in Tight Formations
- Up to 90% Crystalline region
- Side branching effects Density
- Tensile Strength, Stiffness, Abrasion, Hardness,
 Chemical Resistance

Benefits of PE-RT HDPE Pipe

- Higher Operating Temperature
- >20 times Stress Crack Resistant
- Use of Native Backfill for Installation
- Higher Chlorine Resistance
- Lightweight and Flexible
- Outstanding Chemical / Corrosion Resistance
- Abrasion Resistance
- Excellent Flow Characteristics
- Full Range of Pipe Sizes, Molded Fittings and Pressure Capabilities

Resin Evolution

PE 3408 DR 11= 160 psi vs. PE 4710 DR 11 = 200 psi

Long-Term Hydrostatic Strength

- 1. ASTM D2837 Testing Standard to obtain Hydrostatic Design Basis (HDB)
- 2. Data Analysis must yield Straight Line through at least 100,000 hours \rightarrow 50 yrs
- 3. Long Term Hydrostatic Strength (LTHS) is determined at 100,000 hours
- 4. HDS = HDB x DF \rightarrow 1000 psi = 1600 psi x 0.63

Long-Term Toughness

- 1. Total Pressure = Working Pressure (Steady) + Surge Allowance (Anticipated)
- 2. Reoccurring Surge Allowance = 150% x Pressure Rating
- 3. Occasional Surge Allowance = 200% x Pressure Rating

Resistance to Slow Crack Growth

Embrittlement Range

- Water Can Freeze in HDPE pipe without Damage
- 2. Glass Transition Temperature for PE is -130F

Increased Toughness
Larger Deformation
High Impact
High RCP Resistance

DriscoPlex® 1000 PE-RT Series High Temperature PE Pipe

- IPS Size
- 2" 36"
- PE 4710
- Standards
 - ASTM D3350
 - ASTM F714/D3035
- Industrial
 - Mining
 - Power plants
 - Landfill
 - Pulp and Paper Mill
- Municipal
 - Water/Wastewater
 - Dual Containment

Overview

Design

Installation

Thermal Expansion

- 1. PE has Higher Coefficient of Thermal Expansion (α) than other Piping Materials
- 2. PE Has Lower Modulus of Elasticity than other Piping Materials
- 3. PE Thermal Expansion $\approx 1 \text{ in}/10^{\circ}\text{F}/100 \text{ ft}$

Piping Material	Coeff. Thermal Exp/Cont, (α) in/in-°F	Elastic Modulus (E) psi	Stress σ=αΕΔΤ psi
Carbon Steel	6.1 x 10 ⁻⁶	29 x 10 ⁶	177∆T
Stainless Steel	9.1 x 10 ⁻⁶	28 x 10 ⁶	255∆T
Polyethylene	80 X 10 ⁻⁶	0.065 x 10 ⁶	5.2∆T

Force to Required to Prevent Thermal Expansion?

$$F = \sigma A$$

$$\sigma = E\alpha\Delta T$$

$$\downarrow$$

$$F = E\alpha\Delta TA$$

2" Sch. 40 steel pipe; Length = 200 ft; $\Delta T = 40^{\circ}F$

Bend Radius

- 1. Function of Pipe Size, DR and Bend Ratio
- 2. Lower DR = Tighter Bend Capability
- 3. Short Term vs. Long Term Bend Radius

Pipe DR	Minimum Long Term Bend Ratio, α	Minimum Short Term Bend Ratio, α
<u>< 9</u>	20 times pipe OD	10 times pipe OD
11 - 13.5	25 times pipe OD	13 times pipe OD
17 - 21	27 times pipe OD	17 times pipe OD
26	34 times pipe OD	-
32.5	42 times pipe OD	-
41	52 times pipe OD	-
Fitting or flange present in bend	100 times pipe OD	-

Bend Radius?

$$R = \alpha \times OD$$

Lay Length Required?

$$S = \Theta \frac{\pi}{180^{\circ}} R$$

Example:

$$R = 25 \times 13.2$$
" = 28 ft

$$S = 90^{\circ} \times \frac{\pi}{180^{\circ}} \times 28' = 44 \, ft$$

Overview Design

Installation

Heat Fusion Joining Options

Butt Fusion

Saddle Fusion

Electrofusion

Fitting Options

Molded

Fabricated

Specialty

Mechanical Joining Options

Flange Adapter

Mechanical Joint Adapter

Source: Poly-Cam

Branching/Tapping Option

In-line Tapping

Saddle Tapping Tee

Mechanical Tapping Saddle

Electrofusion Branch Saddle

Repair Options

Puncture Repair

Rupture Repair

Why Use?

Short-Term

	HDPE	Steel	Iron	PVC
Tensile Strength	3500 psi	Higher	Higher	Higher
Compressive Strength	1150 psi	Higher	Higher	Higher
Modulus of Elasticity	130,000 psi	Higher	Higher	Higher
Poisson's Ratio	0.45	Higher	Higher	Higher

Long-Term

	HDPE	Steel	Iron	PVC
Corrosion Resistant?	Yes	No	No	Yes
Leak Free Joints?	Yes	Yes	No	No
Seismic Resistant?	Yes	Yes	No	No
Abrasion Resistant?	Yes	Yes	No	No
Toughness?	Yes	No	No	No

<u>Direct Cost</u> <u>Operational Cost</u>

Design Maintenance

Construction Repair

Equipment Rehabilitation Installation Replacement

Indirect Cost

Water Loss
Pumping Cost
Hydraulic Efficiency
Corrosion Cost
Failure Penalties

Lowest life cycle cost of all water piping solutions

QUESTIONS?

Chase Auansakul, EIT auansc@cpchem.com 1-800-233-6495