NC STATE UNIVERSITY

Centennial Campus Smart Grid Master Plan Presentation

Jack Colby- NCSU Ben Dombrowski - Jacobs **JACOBS**

Centennial Campus Smart Grid Master Plan

NCSU Centennial Campus

- 1,000 Acre "Technopolis"
- Partnership of public/private entities
- Promote academic/research collaboration
- Now 4.0 mil gsf of 7.0 mil gsf @ build-out
- Evolving Thermal District Energy System
- 23kV distribution from a 230KV Substation
- Over 60 corporate and government partners including ABB and FREEDM Center

Centennial Campus

Centennial Campus Growth

NC STATE UNIVERSITY

Centennial Campus

NC STATE UNIVERSITY

Smart Micro-Grid Goals at Centennial

- Reliability and Flexibility of the energy distribution infrastructure
- Research Provide smart micro-grid infrastructure to promote/demonstrate R&D...... "Proving Grounds"
- Efficiency Reduce energy consumption and cost
- Private Industry Attract Partners
- Framework Develop a long term framework for expanding and refining the micro-grid.

Centennial Campus Smart Grid Proving Grounds

- Objective Engage academics with the campus infrastructure program to provide a "Test Bed"
- Goals
 - »Protect Reliability of Electrical Service
 - »Collaboration between Utility Staff, Faculty, and Corporate Partners
 - »Next Generation Thinking and Tech Transfer
- Physical Attributes
 - »Medium Voltage Test Facility
 - »Low Voltage Lab
 - »DC Generation & Distribution

North Carolina State University Centennial Campus Smart Grid Proving Grounds - Research Support Infrastructure

AC/DC Test Circuit

- Medium voltage AC/DC test loop
- Ability to test in real world scenario the technology being developed on campus
- Connection to PV and research with FREEDM Center

Low Voltage DC Lab

- Showcase and test low voltage DC
- Abilities could include testing of the following:
 - 1. Consumer Electronics
 - 2. Lighting
 - 3. Renewable Energy Connection
 - 4. Data Centers or Server Hubs

North Carolina State University Centennial Campus Smart Grid - Distributed Generation and Resiliency

Distributed Generation

Cogeneration

» 5.7MW combustion turbine & 900kW steam turbine with 50,000lb/hr HRSG with duct burner

Thermal Storage

» 4 million gallon storage tank. Provide load shedding and redundancy

Steam Micro Turbines

- » Replaces pressure reducing stations at the buildings
- » Needs a minimum of 4,000lb/hr year round to be successful

Grid Resiliency

Grid Isolation

- » Full Isolation Isolate from the grid at anytime
 - Isolate due to high electric cost or reliability issues (Requires 15-30MW)
- » Emergency Provide campus generation during long term power outages
 - Only to run essential buildings and equipment (Requires 5-20MW)

Self Healing Grid

- » Utilize intelligent control system to automatically detect and isolate faults
- » Currently implementing a sectionalized self-healing grid

North Carolina State University Centennial Campus

Smart Grid – Energy Optimization

Smart Campus Control System

- Implement enterprise level system to connect to existing plant and buildings control systems to create an integrated energy system
- Develop a unified energy strategy for the campus to enhance total efficiency and not just local efficiency
- By leveraging existing equipment and economy of scale the economics of system implementation are advantageous

Smart Campus Control System Components

Smart Metering

» Energy Engagement Dashboard and Building Benchmarking/Monitoring

Continuous Commissioning

- » Monitor key pieces of equipment against a set of algorithms and rules to determine if the equipment is functioning properly
- » Develop a prioritized list of equipment faults based on estimated energy cost

Energy Optimization

» Develop a daily energy operating strategy for the campus thermal systems to reduce peaks and optimize energy consumption

Smart Campus Control System Components

Demand Response

- » Supply Air/ Space Temperature/ Chilled Water Demand Response
- » Campus wide implementation allows for real savings

Automated Set Point Control

- » Define a set of rules for spaces and equipment and if set points are outside the parameters of rules the system will reset set points
- » Prevents temporary fixes from becoming permanent energy problems

Campus Data Access

» Allow researchers to mirror the system to complete smart grid research via simulations of the campus systems with impacting campus operations

Next Steps for Smart Micro Grid

- Establish SCADA and Monitor Switching of electrical grid to improve resiliency
- Integrating BAS, central plants, substation, and other control systems for both the supply and demand
- Distributed Generation and Storage
- Organizational Structure to Develop and Operate the Micro Grid

Lessons Learned

- Plan So You Can Plan!
- Create a Tool to Tell the Story & Make the Case
- Look for Opportunities/ Partnerships Build It and They Will Come
- Understand the Complexity of Integration
- People Make It Happen Hire Good.
- Build for the New Grid Economy

Questions

Contact Information

Jack Colby, NC State University

jkcolby@ncsu.edu

Ben Dombrowski, Jacobs Engineering

Ben.Dombrowski@jacobs.com

