TES Tanks

When Theoretical Design Parameters Meet the Real World

Key Design Elements

1. Pressure drop is low
2. Tank must be insulated to minimize losses
3. Must ensure stratification
4. Must minimize thermocline

- Low Froude Number
- Laminar flow through diffuser slots

Thermal Storage Tank Stratification

Water Diffuser Systems

MULTIPLE DISK

TKDA

Water Diffuser Systems

Water Diffuser Systems

Froude Number

The Froude Number is the single most important design parameter in the design of the distribution system. It is the ratio of dynamic (inertial) forces to weight (buoyancy forces). A low Froude Number insures that the buoyancy forces predominate over inertia forces and allow the tank to be stratified.

TKDA

Froude Number

Q/L

$\left(\mathrm{gH}^{3} \times(\Delta \vartheta / \vartheta)\right)^{1 / 2}$

$Q / L=$ Volume flow rate per length of diffuser
g = Gravitational acceleration
H = Height of diffuser
$\Delta \vartheta=$ Difference in water density $=\beta\left(T_{w}-T_{C}\right)$
$\vartheta=$ Density of inlet water

Reynolds Number

The Reynolds Number is the ratio of inertial forces to viscous forces. The critical Reynolds Number distinguishes between laminar or turbulent flow. A Reynolds number below 2000 is required to limit mixing action.

Reynolds Number

Q/L

U
$\mathrm{Q} / \mathrm{L}=$ Volume flow rate per unit length of diffuser
v = Kinematic viscosity

TES Capacity

Net Storage Capacity =
Total Capacity $-($ Freeboard + Thermocline + Heel $)$

Figure of Merit (FOM)

Area A
 Area A + Area B

A = Usable volume
B = Unusable volume
$A+B=$ Total volume

Tank Sizing: Effect of Tank Height to Diameter Ratio to Thermocline

Other factors concerning tank height to diameter:
Site Foot Print (available space), Foundation considerations,
Seismic, Tank economics, Insulation

Performance Test

During the Charging and Discharging, measure the following every 15 minutes:

- Flow Rate In
- Flow Rate Out
- Temperature of water going in
- Temperature of water going out
- Temperature at regular height intervals
- Pressure at inlet
- Pressure at outlet
- Ambient air temperature

Abu Dhabi Results

Location	Abu Dhabi UAE				
Owner	ABU DHABI Industrial City				
General Contractor	Drake and Skull				
Tank Contractor	Petron				
Diffuser Type	TKDA H Shape- Slotted Pipe				
			Results		
			Average	Min	Max
Parameter	Units	Design	Actual	Actual	Actual
Capacity	Ton Hours	15,000			
Peak Charge Rate	gpm	4,486	4380	4320	4426
Peak Discharge Charge Rate	gpm	4,486	3602	2792	5249
Chilled Water Supply	Deg. F	40	41.52	40.46	47.16
Warm Water Returned	Deg. F	56	44.65	44.19	46.22
Temperature Differential	Deg. F	16	2.46	0.72	4.28
Maximum Heat Gain	\% in 24 Hours	1.0\%	1.44		
Ambient Outside Temp	Deg. F	131	115		
Maximum Head Loss	psi	3	1		
Tank Diameter	ft	72.18			
Tank Height	ft	49.22			
Height to Overflow	ft	48.72			
Capacity	Gallons	1,506,374			
FOM	Percent	90.00\%			

Abu Dhabi Graph

Stanford TES 2011 Results

Location	Stanford, CA
Owner	Stanford University
General Contractor	Whiting Turner
Tank Contractor	Pacific Tank and Construction
Diffuser Type	TKDA Patented Polygonal (square)

			Results		
			Average	Min	Max
Parameter	Units	Design	Actual	Actual	Actual
Capacity	Ton Hours	45,000			
Peak Charge Rate	gpm	14,198	14,016	13,185	15,458
Peak Discharge Charge Rate	gpm	14,198	14,252	13,280	14,684
Chilled Water Supply	Deg. F	42	41.85	41.67	42.45
Warm Water Returned	Deg. F	58	58.09	57.69	58.27
Temperature Differential	Deg. F	16	15.71	14.66	15.97
Maximum Heat Gain	\% in 24 Hours	2.0\%	0.00\%		
Ambient Outside Temp	Deg. F	100	65		
Maximum Head Loss	psi	3	0.79		
Tank Diameter	ft	100			
Tank Height	ft	82.5			
Height to Overflow	ft	75			
Capacity	Gallons	4,399,739			
FOM	Percent	92.00\%			

Stanford TES 2011 Graph

Stanford TES 2012 Graph

