Feasibility Study of Aquifer Thermal Energy Storage (ATES) Ford Site, St. Paul, Minnesota

21 June 2016

Presented to

107TH ANNUAL CONFERENCE & TRADE SHOW • ST. PAUL, MN • JUNE 20 - 23

by Mark Worthington Underground Energy, LLC

Mark A. Worthington President C.G., LSP, LEED AP

Underground Energy, LLC

Applied Hydrogeology Ceothermal Innovation

8 Highfield Drive Lancaster, MA 01523 USA Telephone: 508-263-9960 Email: mark.worthington@underground-energy.com

www.underground-energy.com

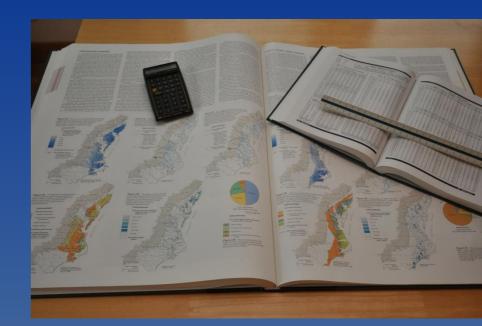
Project Team

Outline

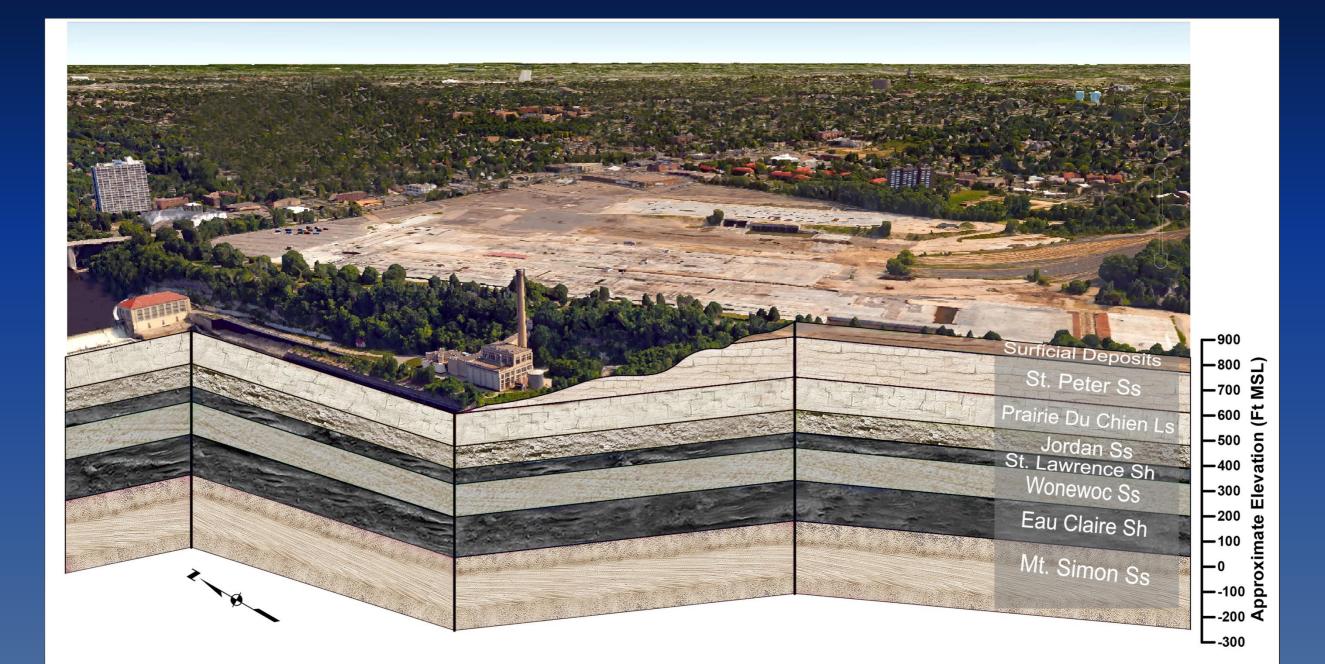
- Why seasonal thermal energy storage?
- Methodology for assessing ATES feasibility at the Ford Site
- ATES Feasibility at the Ford Site in St. Paul
 - -Project History
 - -Hydrogeology
 - -Engineering
 - -Regulatory & Permitting
 - -ATES Benefits
 - -Project Finances
 - -Conclusions and Recommendations
- Overview of ATES suitability in the USA

Why seasonal storage?

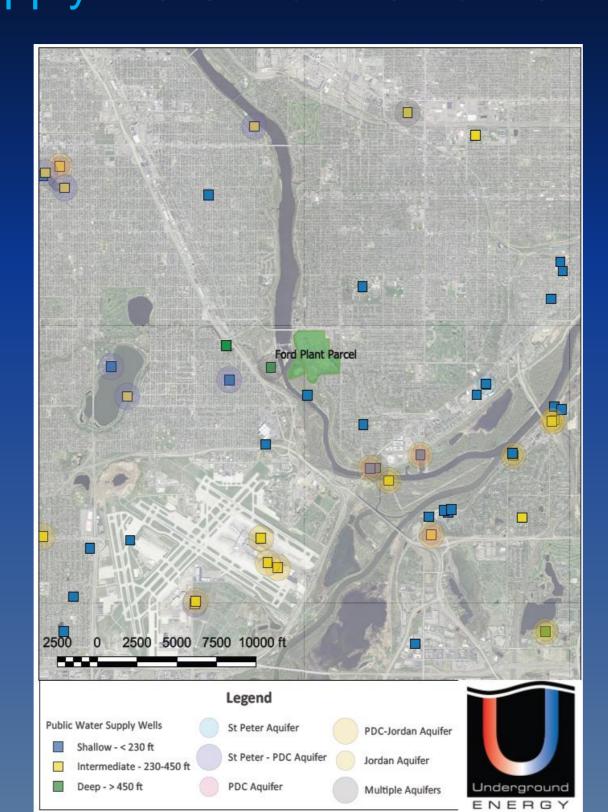
- Steep reductions in GHG are not achievable without utilizing waste heat and low temperature renewable energy resources.
- Availability of zero-carbon heating resources is greater in summer when heat demand is low:
 - Solar
 - Reject heat from chiller systems.
- Availability of zero-carbon cooling resources is greatest in winter when cooling demand is low:
 - Cold winter air or cold surface water
 - Chilled water rejected from heat pumps
- Other no- or low-carbon heat resources may not correlate well with heating demand:
 - Industrial waste heat is tied to operating hours of the industrial facility, and may be subject to interruptions
 - Power production is generally more valuable during summer, leading to sub-optimized CHP design and operations.


Seasonal Thermal Energy Storage Feasibility Study Components

Hydrogeologic Evaluation


- Aquifer physical, hydraulic and geochemical properties
- Identify nearby public water supply wells
- size wells

Engineering Evaluation


- District Energy System Integration
- Conceptual design
- Calculate OPEX and emissions reductions
- Financial Evaluation
- Regulatory Evaluation

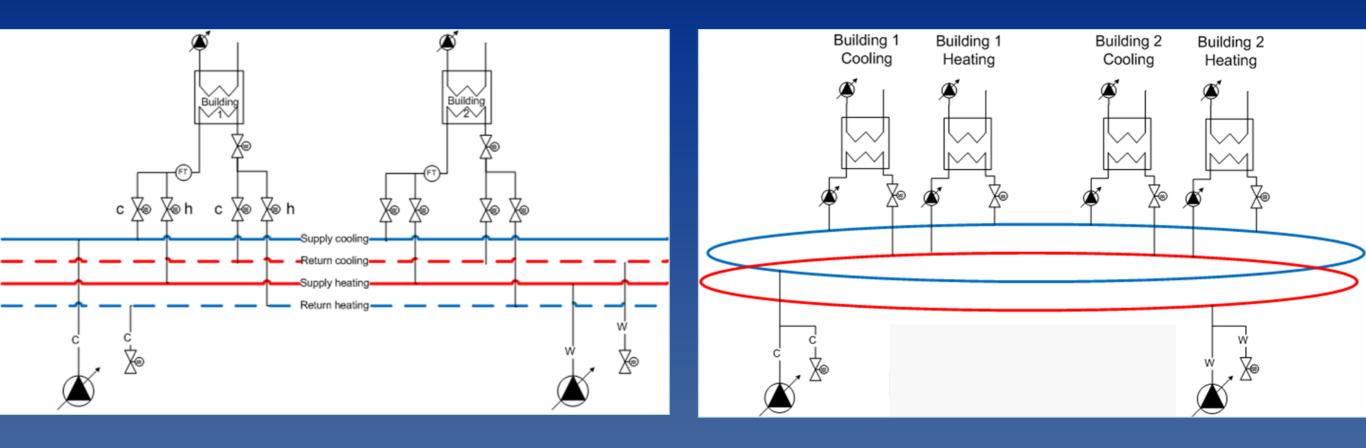
ATES Hydrogeologic Evaluation Multiple Aquifers Underlie the Ford Site

ATES Hydrogeologic Evaluation Public Supply Wells Proximal to the Ford Site

ATES Well Sizing

	Aquifer System				
	St. Peter	Prairie du Chien	Jordan	Wonewoc	Mt. Simon
Well Depth	220 ft 67 m	350 ft 107 m	440 ft 134 m	700 ft 213 m	1100 ft 335 m
Well Screen Length	90 ft 27 m	130 ft 40 m	90 ft 27 m	130 ft 40 m	150 ft 46 m
Well Screen Depth Interval	130-220 ft 40-67 m	220-350 ft 67-107 m	350-440 ft 107-134 m	630-700 ft 192-213 m	950-1100 ft 290-335 m
Borehole Diameter	36 in	36 in	36 in	36 in	36 in
Well Casing Diameter	20 in	20 in	20 in	20 in	20 in
Max. Approach Velocity on Borehole Wall	0.5-0.8 m/hr	0.5-1.5 m/hr	0.5-1.3 m/hr	0.05-0.1 m/hr	0.1-0.6 m/hr
Well Flow Rate	180-260 gpm 40-60 m³/hr	255-760 gpm 60-170 m³/hr	176-441 gpm 40-100m³/hr	14-34 gpm 3-8 m³/hr	73-370 gpm 15-85 m³/hr
Maximum Injection Pressure	4 ft ags	13 ft ags	21 ft ags	38 ft ags	49 ft ags

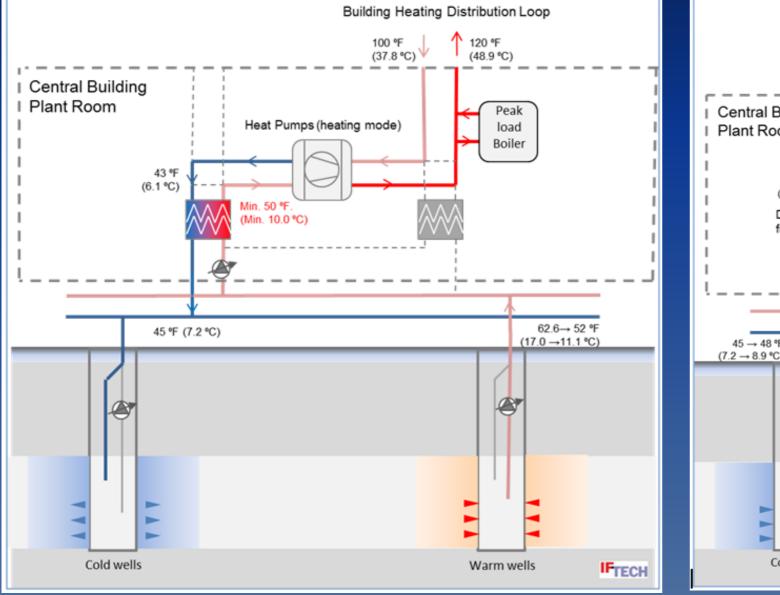
Building Thermal Loads, Ford Site, St. Paul, MN

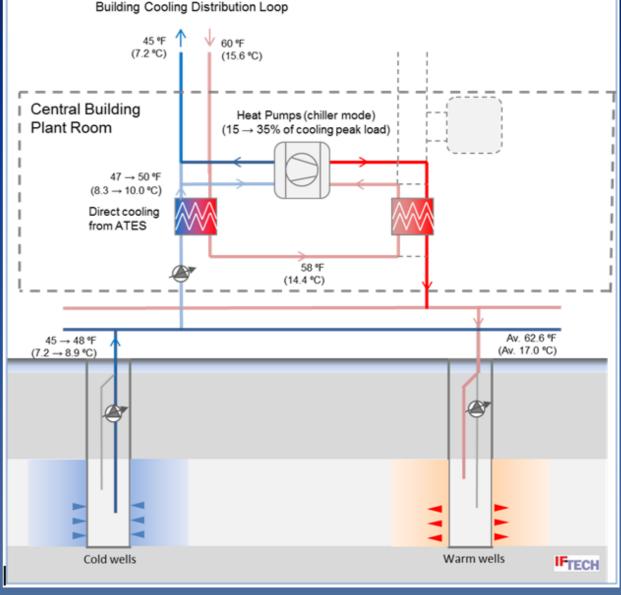

Building type	Conditioned floor area		
	sf	m²	
Low density residential	890,000	83,000	
Medium density residential	780,000	72,000	
High density residential	3,450,000	320,000	
Mixed use/retail	275,000	25,000	
Retail	640,000	60,000	
Civic buildings	300,000	28,000	
Office buildings	235,000	22,000	
Total	6,570,000	610,000	

Building type	Heating de	mand	DHW demand		Cooling demand	
	MMBtu/y	MWh/y	MMBtu/y	MWh/y	MMBtu/y	MWh/y
Low density residential	13,600	3,980	0	0	6,800	1,990
Medium density residential	15,800	4,640	3,960	1,160	7,900	2,320
High density residential	70,600	20,700	17,650	5,180	35,300	10,350
Mixed use/retail	4,300	1,250	430	120	4,200	1,250
Retail	7,400	2,170	740	220	7,400	2,170
Civic buildings	2,400	700	130	35	3,500	1,020
Office buildings	1,700	510	290	85	1,800	510
Total	115,800	33,950	23,200	6,800	66,900	19,610

District Energy Connection Options Ford Site, St. Paul, MN

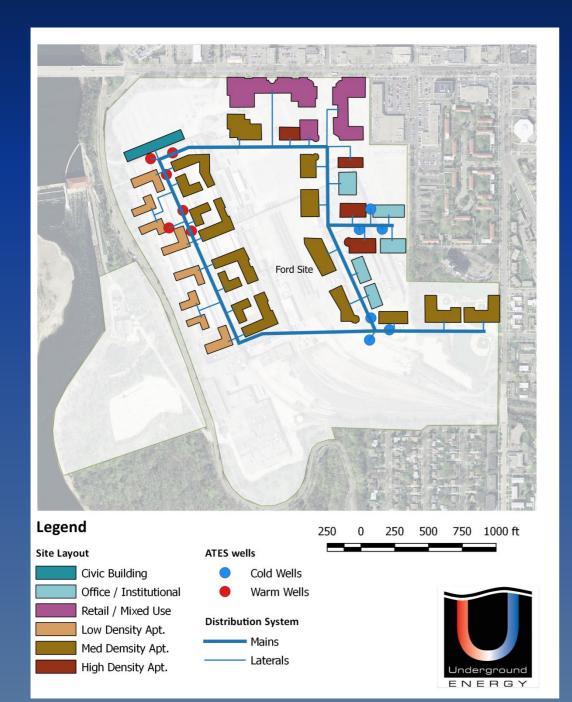
Four-pipe groundwater distribution, passive building connections

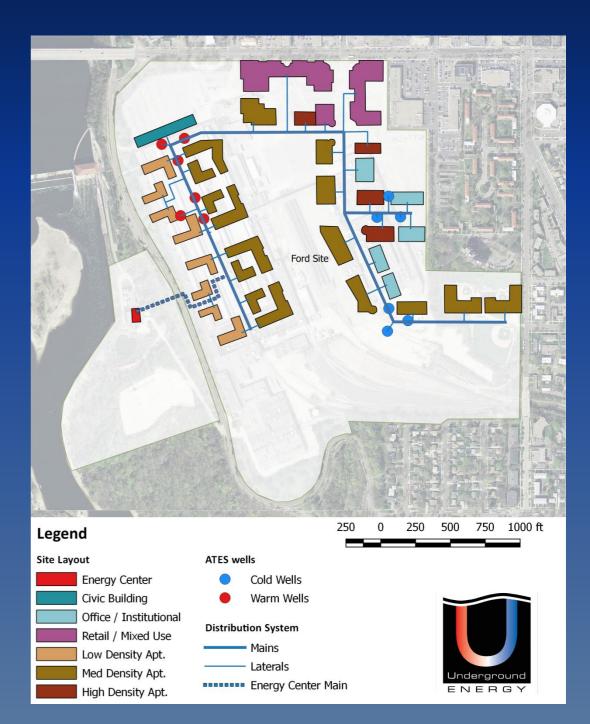

Two-pipe groundwater distribution, active building connections



ATES Heating and Cooling Modes, Ford Site, St. Paul, MN

ATES system in heating mode (winter operation)


ATES system in cooling mode (summer operation)



ATES System Conceptual Layout, Ford Site, St. Paul, MN

Two-Pipe (uninsulated) DE system

Four-Pipe (insulated DE system

Initial ATES System Sizing Ford Site, St. Paul, MN

	Value	Unit	Value	Unit
System heating capacity, incl. DHW	58.5	MMBtu/h	17.1	MWh
System cooling capacity	3,450	Tons	12.2	MWc
Depth wells	440	ft	135	m
Screened section	165	ft	50	m
Maximum well yield	900	gpm	200	m³∕h
Number of doublets (pair of wells)	6	-	6	-
Minimum distance between warm and cold well clusters	650	ft	200	m
Maximum flow rate groundwater system	5,500	gpm	1,250	m³⁄h
Ambient groundwater temperature	49	°F	9.3	°C
ATES storage and abstraction temperatures in winter and	Figure 7 and 8	°F	Figure 7 and 8	°C
summer operation				
ATES/HP heating capacity	22.2	MMBtu/h	6.5	MWh
Total boiler capacity	36.3	MMBtu/h	10.6	MWh
Annual heating demand supplied by ATES/HP system	75	%	75	%
Annual heating demand supplied by boilers	25	%	25	%
ATES direct cooling capacity	2,230	Tons	Min. 7.9	MWc
Total HP cooling capacity	1,220	Tons	4.3	MWc
Distribution system length, mains	1,650	ft	503	m
Distribution system length, laterals	1,340	ft	408	m

ATES Engineering Evaluation Energy Savings, Ford Site, St. Paul, MN

• ATES Savings vs BAU:

- 40% savings in primary energy consumption

-35% reduction in CO2 emissions

-100% reduction in cooling water consumption

ATES Financial Evaluation Ford Site CAPEX Summary

	BAU	ATES/HP
Site investigation incl. test well (first borehole) and three	\$0	\$ 600,000
monitoring wells, analysis of results, EIA		
Thirteen additional boreholes 36" diameter, 440 ft depth,	\$0	\$ 4,200,000
incl. development and tests		
Well housings and well M+E equipment, incl. installation	\$0	\$ 900,000
Piping incl. trenching DH&C distribution and piping and	\$ 5,200,000	\$ 1,800,000
cabling incl. trenching groundwater distribution		
respectively		
M+E equipment central plant room and 38 building plant	\$ 9.200,000	\$ 13,300,000
rooms respectively, incl. controls and installation		
Energy transfer stations 38 buildings	\$ 6.600,000	\$0
Subtotal BAU and ATES/HP system	\$ 21,000,000	\$ 20,800,000
Engineering, main contractor overhead, bonding, insurance	\$ 4,200,000	\$ 4,000,000
20% (excluding site investigation)		
Contingency 10% (including site investigation)	\$ 2,100,000	\$ 2,100,000
Total BAU or ATES/HP system	\$ 27,300,000	\$ 26,900,000

ATES Financial Evaluation

Ford Site, St. Paul, MN

	BAU	ATES/HP
Electricity consumption	\$ 260,700	\$ 536,300
Natural gas consumption	\$ 778 <i>,</i> 500	\$ 177,000
Water consumption	\$ 66,300	\$0
Operating and maintenance cost	\$ 615,000	\$ 720,000
Total BAU or ATES/HP system	\$ 1,720,500	\$ 1,433,300

ATES system yields 17% OPEX savings vs. BAU

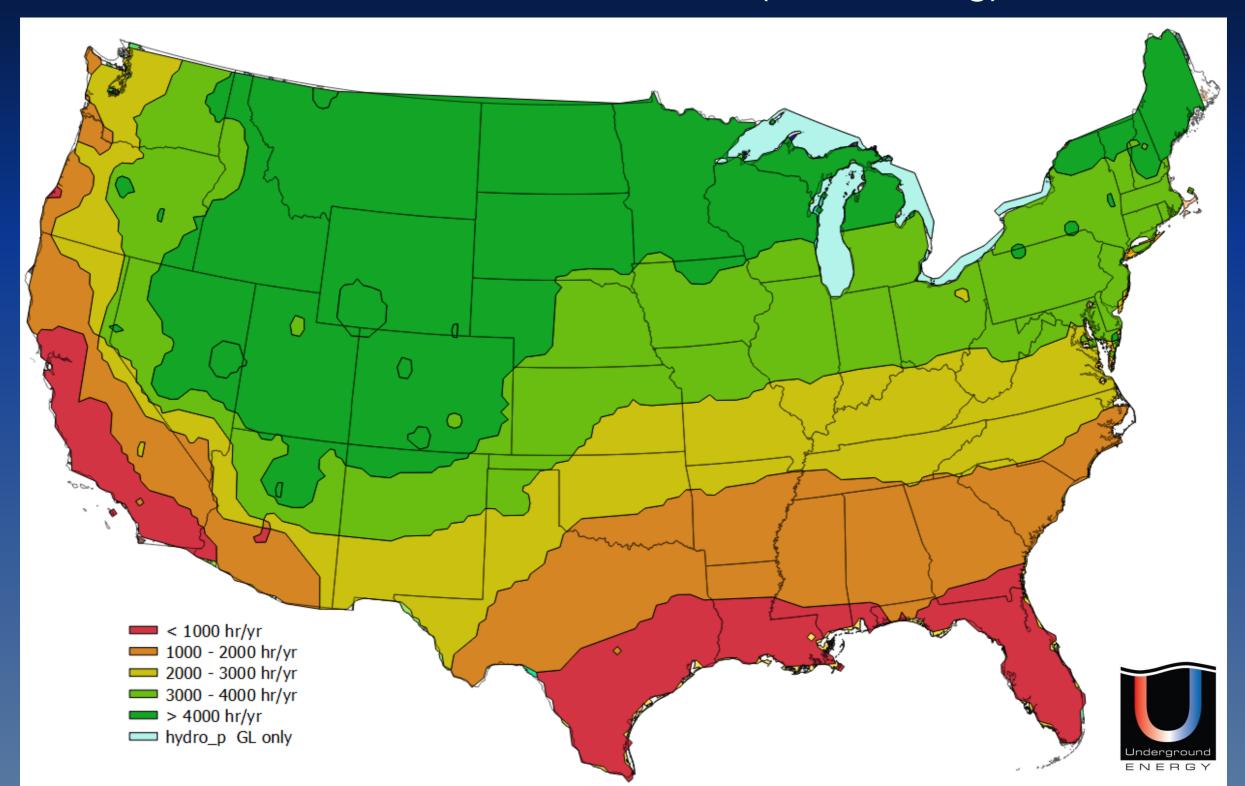
ATES Regulatory Evaluation

- The federal regulation that applies to an ATES system is the Underground Injection Control (UIC) program administered by the US EPA. ATES wells are Class V injection wells under the UIC program. The EPA retains primacy over the UIC program in Minnesota.
- The suitability for ATES of aquifers below the St. Peter sandstone at the Ford Site is unlikely to have been affected by anthropogenic contamination from historic land uses at the Ford Site.
- An appropriation permit for a groundwater withdrawal exceeding 10,000 gallons per day is required from the Minnesota Department of Natural Resources (DNR).
- Under MR 4725.2050, injection of any material into a well or boring in Minnesota is prohibited. The only option for an ATES system, short of a change in law, is to seek a variance from the rule pursuant to MR 4725.0400. Precedent exists for issuance of such variances.

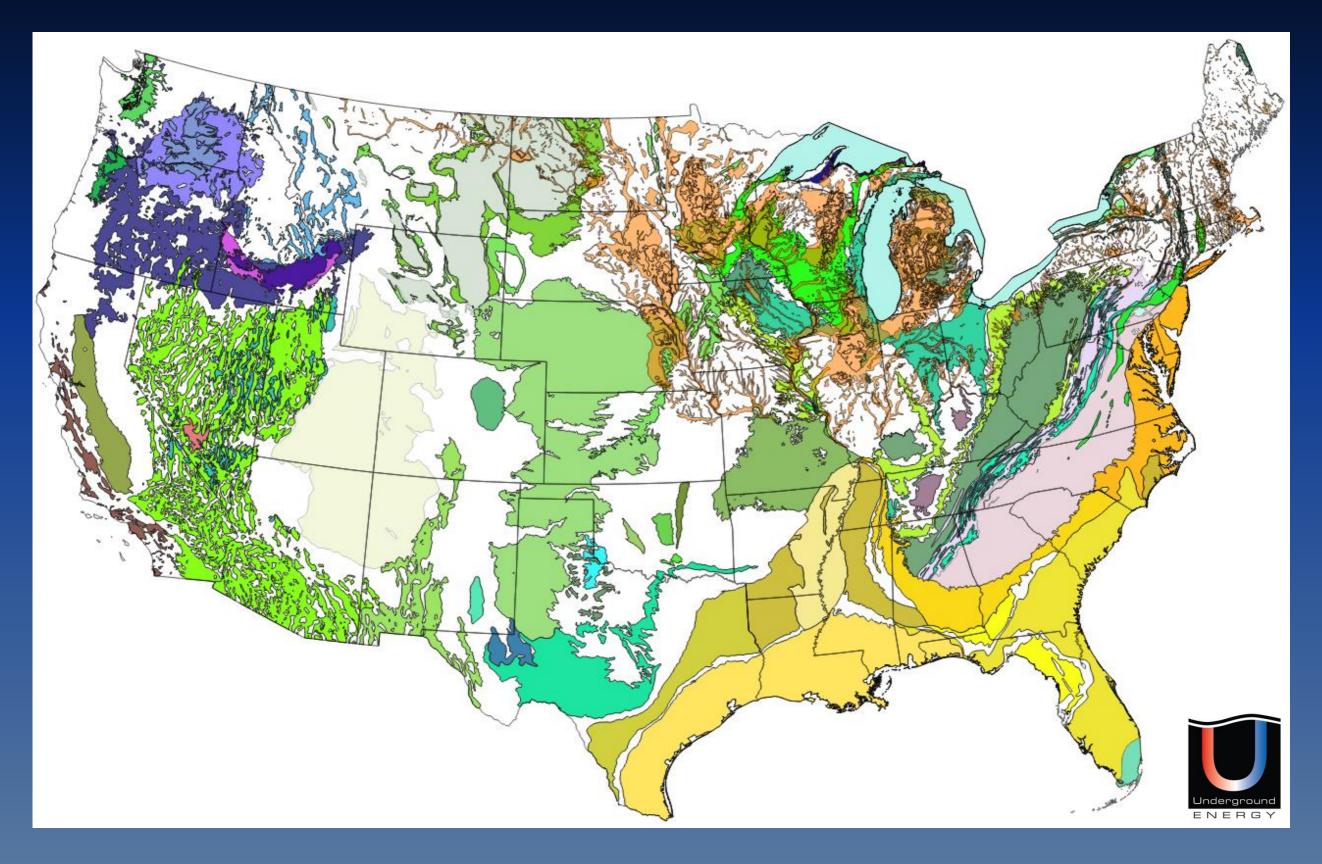
ATES Feasibility Study Conclusions

- ATES is feasible at the Ford Site in St. Paul. The climate, hydrogeology and large, relatively balanced loads are well suited for ATES. More than 75% of the annual cooling demand can be met with direct cooling enabled by seasonal thermal energy storage.
- The ATES system can provide savings on primary energy consumption of about 40% compared to the BAU scenario of centralized gas boilers and electric chillers with a 4-pipe DH&C system.
- Our conceptual design utilizes 12 ATES wells (6 warm, 6 cold) of ~900 gpm capacity (5,500 gpm total max flow) to provide a heating capacity of 59 MMBtu/h (17 MW) and a cooling capacity of 3,450 tons (12 MW).
- The ATES project can be completed in phases as the Ford Site redevelopment is built out.
- Other than localized thermal impacts in the aquifer and temporary construction impacts, an ATES project will have minimal adverse environmental impact.

ATES Feasibility Study Conclusions (continued)


- The regulatory scheme in Minnesota prohibits underground injection for large open-loop systems, however, there is precedent for a variance to the rule.
- Other than localized thermal impacts in the aquifer and temporary construction impacts, an ATES project will have minimal adverse environmental impact.
- Compared to BAU, ATES yields a 17% reduction of operating expenses at a similar capital cost.

Recommendations


- Evaluate ATES for cooling and/or heating in the Twin Cities area and other US locations where there are:
 - Large heating and cooling loads, and
 Seasonably variable climate, and
 An aquifer exists!

Where is the climate suitable for ATES?

Annual water-side economizer (free cooling) hours

Where are the aquifers?

Thank You!