

What Could Go Wrong?

- Damage Onsite Generation
- End up with an Unreliable Plant
- Get a Large Bill for Utility System Upgrades
- Construct a Project the Utility Won't Accept
- Lose Money on Power Transactions

Agenda

- ▶ Voltage Level
- ▶ Utility Protection Requirements
- ► Import/Export Restrictions
- Relay Coordination
- Generator Islanding
- Loading and Load Shedding
- ► Available Short Circuit Current
- ▶ Case Studies

Interconnection Voltage Level

- ▶ Transmission
 - >69,000V
- Primary Distribution
 - 12,470V 34,500V
- Secondary Distribution
 - 480V 4,160V

Utility Protection Requirements

- Protection Requirements Differ by Utility
- ▶ IEEE 1547 Requirements
 - An Attempt to Standardize <10MVA
 - Primary and Secondary Interconnections
- ▶ Islanding Protection
 - Direct Transferred Trip
 - Reverse Power 32
 (Non-Export Applications)

Utility Protection Requirements

- Additional Protection
 - Over/Under Voltage 27/59
 - Over/Under Frequency 81O/U
 - Directional Overcurrent 67, 67N
 - Ground Overvoltage 59N
 - ▶ Utility Interconnection Delta-Wye
 - Sync Check 25

Import/Export Restrictions

System Minimum Load > Generator Output = Import System Minimum Load < Generator Output = Export

- Exporting (Even on a Rare Occasion)Requires Market Participation
 - Additional Metering Requirements
 - Subject to Market Rules and Pricing
 - Location Dependent Rules Vary

Relay Coordination

Interconnection Protection Settings Driven by Utility and System - Reclosing

- ▶ Transmission
 - Coordinate with Line Relays
- Primary Distribution
 - Coordinate with Substation Feeder
- Secondary Distribution
 - Coordinate with Transformer Protection

CURRENT IN AMPERES

ONCOR- Provided Settings-Phase.tcc Ref. Voltage: 13200V Current in Amps x 1 ONCOR- Provid

Generator Islanding

- ▶ Planned Islanding
 - Deliberately Separate from Utility
 - Generator Capacity Must Exceed Load
 - Generators Operate in Frequency Control (Isochronous)
 Mode
 - Maintain 60Hz
 - ► Share Load if Multiple Generator Installation
 - Manual or Automated Initiation

Generator Islanding

- Unplanned Islanding
 - Generation Energizes a Portion of the Utility System Following a Utility Outage
 - Generation Must Automatically Separate from Utility
 - Separation Must Occur Before Utility Reclosing
 - Separate Entire System and Operate in Island Mode
 - Trip Utility Interface Breaker(s)
 - Separate Generator(s) Only
 - Trip Generator Breaker(s)

Loading and Load Shedding

- ▶ Islanding with Load > Generator Capacity Requires Load Shedding
 - Automated Load Shedding Required Options:
 - Frequency Based
 - Shed Load Until 60Hz can be Maintained
 - Rate of Frequency Decline
 - Prioritized
 - Load/Capacity Based
 - Monitor Load and Online Generator Capacity
 - Shed Load to Below Online Generator Capacity

Available Short Circuit Current

- Onsite Generators Contribute Short Circuit Current
 - On the Customer Side
 - · On the Utility Side
- ▶ Protective Equipment Interrupting Ratings Must Exceed Available Short Circuit Current
- Mitigation Techniques
 - Upgrade Switchgear/Breakers
 - Add Impedance
 - ▶ Transformers
 - Reactors
 - Limiters

CASE STUDIES

Harvard Blackstone Plant – Cambridge, MA

- Existing Steam Turbine Generator– 5MW
- New Combustion Turbine Generator − 7.5MW
- Primary DistributionInterconnection
- Serves Harvard Campus
 - Locally connected to Business School
 - Remotely connected to Holyoke Substation

Harvard Blackstone Plant – Cambridge, MA Initial Proposed Interconnection

NSTAR NSTAR PUTNAM SUB PUTNAM SUB CLOSED NEW 7.5MW EXIST 5MW OPEN NSTAR PUTNAM SUB VIA HOLYOKE

Harvard Blackstone Plant – Cambridge, MA Initial Proposed Interconnection

- ▶ Utility Interconnect Study Results
 - Unacceptable short circuit contribution
 - Putnam substation contingency alignment tie breaker closed
- No Additional Short Circuit Current Contribution Allowed
 - STG and CTG contributions approximately equal
- ▶ Now What???? Back to the Drawing Board

Harvard Blackstone Plant – Cambridge, MA Proposed Interconnection Modification

- ▶ Eliminate Additional Short Circuit Contribution
- ► Inserting Impedance Unacceptable Voltage Drop
 - Reactors
 - Transformers
- ▶ Solution Limiter

Harvard Blackstone Plant – Cambridge, MA Proposed Interconnection Modification

Harvard Blackstone Plant – Cambridge, MA Proposed Interconnection Modification

- ► Limiter Effectively Eliminates Short Circuit Contribution from STG
- ▶ Trip Setting
 - Current magnitude
 - AND
 - Current rate of rise
- Minimize Nuisance Tripping
- Only Enable When Utility Substation Ties are Closed
- ▶ No Impact to Operations

- Solar Mercury 50 Combustion Turbine − 5MW
- ▶ 35,000 lb/hr Steam Capacity
- Primary Distribution
 - Two 12,470 Utility Feeders
- Emergency Generation
- Serves Dell Children's Hospital

Initial Operation – Single Utility Feeder

- ► Reliability Issues
- Frequent Momentary Utility Outages
 - Overhead Exposure
- ► Transition to Island Mode Not Always Successful
- ▶ CT Contribution to Faults Caused Trips

Modified Operation - Dual Utility Feeders

- ▶ Significant Reliability Improvement
- ▶ Same Number of Momentary Utility Outages
 - · But Only One Feeder at a Time
 - Plant Remains Connected to "Healthy" Utility
- ► Faults Cleared Quickly
 - Reduced Impact on CT
- Automatic Reclose on Utility Return
 - Transparent to Plant Operators

- ▶ 3 CAT NG Recip 3MW Each
 - North Campus
- ▶ 4 Deutz NG Recip 3.2MW Each
 - South Campus
- ▶ Transmission Interconnect
 - Two 138,000V Utility Lines
- ▶ 21.8MW Distributed Peak Shaving
- Campus Load Exceeds Generation Capacity

Initial Operation - Trip Campus Feeder

- Reliability Issues
- Directional Overcurrent 50 Element Always Asserted
 - Load Current Above Pick-up
 - Pick-up and Directional Decision Not Linked
 - Transmission System Faults Several Buses Away Caused Trips
- ▶ Load Exceeds Generator Capacity Generators Trip
- Campus Wide Outage with Utility Available

Modified Operation – Trip Generator Breakers Directly

- Significant Reliability Improvement
- Added Load Encroachment Relay Supervision
- ▶ Eliminate Campus Wide Outages
- ▶ Transmission System Very Reliable
- ▶ Generator Deployment Economic Only

Conclusions

- ► CHP Generator Interconnection is Critical
 - No Two Installations are Identical
 - Utility Involvement is Required
 - Protection and Metering Requirements
 - Develop CHP Design Basis Early in Project
 - Loading vs. Capacity
 - Islanding
 - Load Shedding
 - Import/Export
 - Interconnection Studies
 - Available Short Circuit Current

BURNSMCD.COM/ONSITE

CONTACT

Michael Dempsey, PE P 817-733-8186 E mdempsey@burnsmcd.com