LET ENERGY STORAGE

Microgrids & Long-duration Energy Storage

MAXIMIZING VALUE & RESILIENCY

MICHAEL CARR, VICE PRESIDENT OF STRATEGIC & WESTERN SALES, UNIENERGY TECHNOLOGIES

21st Century Energy

Global Shift to Distributed Energy Resources

Key Drivers For Storage in Microgrid Contexts

EPB Chattanooga

Sandia National Lab

Las Positas College

Mission Produce

Naval Base Ventura County – Port Hueneme

Avista/Schweitzer

Advanced Vanadium Flow Battery

- number of cycles
- using 100% of stored energy
- No degradation for 20 years +
- Non-flammable

Product Flexibility for 4hr, 6hr, 8hr solutions

Increased storage duration requires no additional components beyond more e'lyte. Therefore, on a kWh basis:

- System complexity is reduced
- Auxiliary power is reduced

- Reliability is increased
- Maintenance costs are reduced
- System footprint is reduced

Key Advantages of Long-Duration Flow Batteries

- Versatile Change Happens
 - > Full range of fast-response & long-duration (power & energy) applications, same battery
 - > "Stack" applications, e.g. concurrent ramping & frequency regulation
 - > No state-of-charge (SOC) or duty cycle limitations
 - > Operational from -40°C to +50°C
- Durable
 - > ≥20-year system life with unlimited cycles
 - > 100% capacity access over lifetime NO DEGRADATION
- Intrinsically Safe
 - > Zero Flammability no thermal runaway mechanisms
 - Aqueous electrolyte zero reactivity
- Cost Effective
 - Low Total Cost of Ownership (CapEx, OpEx)
 - > Capture multiple value streams

AVISTA UTILITIES – PULLMAN, WASHINGTON

SCHWEITZER ENGINEERING LABS

1MW/4MWh

Grid-connected services

- Avista Distribution Circuit
- power: freq. & volt. reg.
- energy: peak shaving, ramp

Customer-side services

- Schweitzer Eng. Lab
- islanding, black start, seamless switching

DOE Global Energy Storage Database

http://www.energystorageexchange.org/projects/1406

Example of Sub-second Islanding

- ☐ The graphic illustrates a successful UET seamless islanding demonstration
- ☐ Transition from grid connected operations to islanded operations with minimal disturbance in approximately one cycle.
- ☐ At the beginning we are grid-tied and charging the battery with full power, and after the transition we are discharging at full power into an islanded load.

Naval Base Ventura County – Port Hueneme

U.S. NAVY'S RESILIENT ENERGY PROGRAM OFFICE

Customer-side services

- Base Critical and Super Critical Loads
- Islanding, black start,resilience (hours months)

Grid-connected services

- Oxnard Distribution Circuit
- Power: freq. & volt. reg.
- Energy: RA, peak shaving

4.5MW/18MWh + 6MW Solar PV

LAS POSITAS COLLEGE – LIVERMORE, CALIFORNIA

200kW/1MWh

Grid-connected services

- Demand Response
- Ancillary Services

Customer-side services

- Demand Charge Reduction
- Energy Arbitrage
- Integrating PV
- Operations Bldg. Resilience

Las Positas 7 Day PG&E Power Profiles

Las Positas College Microgrid

PG&E Rate Structure Trends, 2009-2016

Blue- Peak Demand Charge/kW

Orange- Peak Usage Charge /kWH

CLPCCD- Billings 2009-2016, September rate structure

Las Positas College Microgrid

Projected Peak Demand Charge Management

Blue- Current Purchased kW Power Red- Projected Purchased kW Power

*Combining 1MWH Electrical Storage with 3200 Ton-Hrs Thermal Storage

Impact of Suggested Changed Time of Use Periods

Copyright UET ©2017

Rate Schedule	Months	KW Reduction	Per kW Rate	Savings
Summer				
Monthly Max KW	6	400 KW	\$14.44	\$34,656
Peak Max KW	6	400 KW	\$19.34	\$46,416
Park Peak Max KW	6	400 KW	\$ 5.17	\$12,408
Winter		400 KW		
Monthly Max	6	400 KW	\$14.44	\$34,656
Park Peak Max	6	400 KW	\$ 0.13	\$ 312
ESTIMATED TOTAL	ANNUAL	SAVINGS		\$128,448

^{*}PG&E E-20 NEMMT- Primary Firm Rates, October 2016

Evaluating the Cost of Energy Storage

Upfront cost of system

Lifetime cost of energy

Evaluating the Cost of Energy Storage

Standard approaches for evaluating the cost of energy storage:

- Present Value Installed Cost (\$/kWh Installed)
- Levelized Cost of Storage (LCOS), Energy (LCOE)
- Total Cost of Ownership (TCO)

A simple definition of \$/kWh Installed:

$$\frac{CapEx + NPV \ of \ OpEx}{AC \ energy \ rating \ of \ the \ system} = \frac{\$}{kWh}$$

A simple definition of TCO/LCOS:

$$\frac{CapEx + NPV \ of \ OpEx}{Total \ energy \ deployed \ over \ system \ life} = \frac{\$}{kWh}$$

Financial Performance vs. Degradation

Case study compares the financial performance of the project vs. battery degradation

Facility Type: Manufacturing Plant

Location: CA

Application: Demand Reduction

Tariff: PG&E E-20

System Size: 1 ReFlex

Incentives: SGIP + MACRS

System Installed Cost: \$338,256

Results:

@ 0% Annual Degradation:

- 21.6% IRR
- \$345,942 NPV

@ 3% Annual Degradation:

- 17.36% IRR
- \$200,401

20-Year IRR vs. Degradation

20-Year NPV vs. Degradation

Financial Performance vs. Efficiency

Case study compares the financial performance of the project vs. battery efficiency

Facility Type: Manufacturing Plant

Location: CA

Application: Demand Reduction

Tariff: PG&E E-20

System Size: 1 ReFlex

Incentives: SGIP + MACRS

System Installed Cost: \$338,256

Results:

@ 70% eff:

- 21.6% IRR
- \$345,942 NPV

@ 85% eff:

- 22.8% IRR
- \$377,096 NPV

20-Year IRR vs. Battery Efficiency

20-Year NPV vs. Battery Efficiency

Questions?

Washington Governor Inslee @ SnoPUD Dedication Event, March 2017

Michael Carr

Vice President of Strategic & Western Sales UniEnergy Technologies, LLC 425-610-3211

Michael.Carr@uetechnologies.com www.uetechnologies.com