

Follow-Up + Conclusion

University of Iowa:
Single-Point Failure Analysis
RAM Program

University of Iowa

- Single-Point Failure event
- Reliability Engineering
- ASME RAM-1 Standard

Approach

Task 1: PROGRAM STATEMENT

• <u>Description</u>:

 A compilation of documents that establish the purpose of the power plant and the RAM Program.

• Results:

- Scope of work
- Basis of Design
- Functional Requirements

Task 1: PROGRAM STATEMENT

RMF Engineering Reliability, Efficiency, Integrity						University of Project No. 046	
SYSTEM	SUB-SYSTEM	A FUNCTIONAL REQUIREMENTS	MEASURED PARAMETERS	REQUIRED TOLERANCES	GOAL TOLERANCES	IMPLEMENTATION REQUIREMENTS	NOTES
ALL SYSTEMS		Sustain an injury-free work environment.	Lost time injuries.	3 years without a lost time	5 years without a lost time	Immediate	
		Provide an OSHA approved work environment.	Audit results (internal and external)	injury. 5 years with no violations	injury. 10 years no violations	Immediate	
Steam		Distribute steam to the campus at 155 psig @ 410 F and 20 psig @ 280 F.	155 & 20 psig Distribution Pressures	155 @ +/- 10 psig, +30 F 20 psig @ +/- 5 psig, +/- 20 F	155 @ +/- 3 psig, +10 F 20 psig @ +/- 5 psig, +/- 20	Full electronic, trended control of all steam systems	
		Generate steam efficiently.	Fuel-to-steam energy ratio	75%	80%	Electronic, trended control	
	HPS (500#)	Maintain 500 psig steam at 750 F in main steam header.	Main Steam Header Pressure	+ 10 psig - 10 psig	+5 psig -5 psig	Electronic trended control	
	MPS (155#)	Maintain 155 psig steam at 410 F in MPS header.	MPS Header Pressure	+30 %F + 5 psig - 5 psig	+10 °F +5 psig -5 psig	Electronic, trended control	
	LPS (20#)	Maintain 20 psig steam at 280 F in LPS header	LPS Header Pressure	+ 5 psig - 2 psig	+1 psig -1 psig	Electronic trended control	
			LPS Steam Temperature	-20 °F	-10 °F		
HPS (500#) Maintain 500 psig steam at 750 F in main steam		nain steam header.	Main Steam Hea	der Pressure	+ 10 psig - 10 psig	+5 psig -5 psig	
				HPS Steam Temperature		+30 ºF	+10 ºF
MPS (155#)		Maintain 155 psig steam at 410 F in MPS header.		MPS Header Pressure		+ 5 psig - 5 psig	+5 psig -5 psig
				MPS Steam Temperature		+30 ºF	+10 ºF
	Turbine	Collect and return all turbine condenser condensate to the main condensate system.	Hotwell Level	+ 5" -5"	Setpoint = 0" (+/- 2")		
Feedwater		Maintain the feedwater header with a constant supply of deaerated, saturated feedwater at 300 psig.	Feedwater Header Pressure	+ 10 psig - 10 psig	+5 psig -5 psig	Electronic, trended control	
		Deaerate condensate/make-up water at 6 PSIG saturated		+ 5°			

Task 2: SCHEMATIC DRAWINGS

- Description:
 - Establish a current set of accurate existing condition drawings.
- Results:
 - 129 Drawings
 - Engineering Design
 - Operations
 - Maintenance
 - Training

Task 2: SCHEMATIC DRAWINGS

Task 3: OM&R ANALYSIS

• <u>Description</u>:

 Evaluation of the effectiveness of the current OM&R practices along with recommendations.

Results:

- Phase 1 improved RAM-1 compliance from 55% to 74%.
- Phase 2 has an anticipated compliance of > 90%.

Task 3: OM&R ANALYSIS

Task 4: SINGLE-POINT FAILURE (SPF) ANALYSIS

• <u>Description</u>:

 Evaluate every component in the power plant to determine if its single failure could potentially cause an outage of the MPP.

Results:

- 101 Systems/Sub-Systems
- 16,000+ components evaluated.
- 898 single-points of failure identified (~6%)
- 201 operational
- 178 human error

Task 4: SINGLE-POINT FAILURE (SPF) ANALYSIS

Task 4: SINGLE-POINT FAILURE (SPF) ANALYSIS

Task 5: FAILURE MODES, EFFECTS, AND CRITICALITY (FMECA) ANALYSIS

• **Description**:

 Identify the modes of failure of the critical (single-point of failure) components.

Results:

- Numerical values were established to rank and prioritize the risk.
 - » Pareto Charts
 - » Risk Plots
 - » Risk Reduction Value

Task 5: FAILURE MODES, EFFECTS, AND CRITICALITY (FMECA) ANALYSIS

Mitigation Recommendations

276 Failure Mode Causes Identified

- Mitigation Techniques Include:
 - Operational, Maintenance, Engineering

- Recommendations
 - 65% Estimated Risk Reduction

Data Mining

Cause

Risk Plots

Risk Plot - Initial

Risk Plot - Revised

Task 6: RAM PROGRAM MANUAL

• <u>Description</u>:

 Summary manual of results and active information to be kept as a living document.

Results:

 Provides the structure to proactively control and sustain availability of the MPP.

Task 6: RAM PROGRAM MANUAL

Moving Forward...

RMF Engineering **Program Statement Existing P&ID OM&R Analysis** Phase 1 **Single-Point Failure Analysis** Failure Modes, Effects, & Criticality Analysis **RAM Program Manual** 6. **Reliability-Centered Maintenance** Operations, Maintenance, & Repair Guidelines **Specification Guidelines** Phase 2 10. Training 11. Audit

Data Mining

Cost for Short Plant Outage Event	\$100,000
Cost for Medium Plant Outage Event	\$500,000
Cost for Long Plant Outage Event	\$1,000,000

Probability of Failure Based On Empirical Data					
	Failure / 10 Years (empirical data)	Failure Mode Probability			
Ultimate Failure	2	0.15			
Human Error Failure	7	0.54			
Operational Failures	4	0.31			

EXPECTED VALUE ANALYSIS

Expected Value Analysis On Failure Event						
FMECA Failure Mode RPN Ranking	Failure Mode Probability (empirical data)	Component Count Per Failure Mode (SPF & FMECA)	Probability of High, Medium and Low Failure Mode (based on quantity of component)	Consequence Cost Per FMECA Ranking	Expected Consequence Cost After One Failure (Branch EV)	Failure Mode EV %
HL- Human Failure Low Risk		38	0.22		\$11,626	2%
HM - Human Failure Medium Risk	0.54	119	0.68		\$182,037	32%
HH- Human Failure High Risk		19	0.11		\$58,129	10%
OL- Operational Failure Low Risk		0	0.00	\$100,000	\$0	0%
OM- Operational Failure Medium Risk	0.31	61	0.31	\$500,000	\$46,923	8%
OH- Operational Failure High Risk		139	0.70	\$1,000,000	\$213,846	38%
UL- Ultimate Failure Low Risk		444	0.49	\$100,000	\$7,607	1%
UM- Ultimate Failure Medium Risk	0.15	395	0.44	\$500,000	\$33,836	6%
UH- Ultimate Failure High Risk		59	0.07	\$1,000,000	\$10,108	2%

Data Mining

Reliability-Centered Maintenance (RCM) Task Evaluation

	Percent Reduction of Failure Mode Risk	Task Cost Per Failure Mode Per Component for 10 Yrs	Failure Mode Addressed	Total Task Cost Over 10 Years	Total Cost Consequence After 10 Years	Task Reduction of Risk	Task Performance Ratio (\$ / %)
Task 0 - No actions (Baseline)			None	\$0	\$7,333,451	0%	0
Task 1 - Lock and Tag	90%	\$500	Human Error Only	\$88,000	\$4,475,485	40%	\$111,409
Task 2 - Preventive Maintenance	50%	\$10,000	Operational Failure Only	\$2,000,000	\$7,638,451	23%	\$330,479
Task 3 - PM Inspection	30%	\$1,000	Operational and Ultimate Failure	\$1,098,000	\$7,213,405	17%	\$434,295
Task 4 - Engineering	60%	\$0	All Failures	\$20,000,000	\$22,933,381	60%	\$382,223

University of Iowa: Main Power Plant

AIM Maintenance Software

Work Order	Description
16-478692	Field tag and label critical interface valves that can lead to unplanned plant outage if operated. Provide follow-up training to operations shift supervisors and operators.
	SEW-V-014 to find location, see P&ID 117.2 Quadrant I-9.

University of Iowa: Main Power Plant

Real Data

- Tremendous Amount of Real MPP Risk Data
- Ability to Data Mine
- Justified Additional Personnel

Utilizing Maintenance Software

- Upload into existing AIM Program
- Sustainable approach

Control Risk

- Prioritize Maintenance Tasks
- Monitoring Risk Mitigation

Conclusion

<u>PROs</u>

- ASME Structured Approach
- Pinpoint Precision of Equipment Criticality
- Real Risk Numbers
- Foundation to Sustain a Reliability Program
- Applicable to New Design

CONs

- Initial Investment
- "Snapshot" Data
 - Must Be Maintained
- Assumption Quality

Follow-Up + Conclusion

University of Iowa: Single-Point Failure Analysis RAM Program

Brian Wodka, PE RMF Engineering Brian.Wodka@RMF.com Benjamin Anderson
University of Iowa
Benjamin-Anderson@UIowa.edu

