

Spartan Students Say "Go Green"!

Michigan State University Switches From Coal to Natural Gas

Bob Ellerhorst, Michigan State University Matt Haakenstad, U.S. Energy Services

Introductions

Bob Ellerhorst, PE

Michigan State University Director of Utilities rlellerh@ipf.msu.edu

- Matt Haakenstad, PE
 U.S. Energy Services
 - VP, Advisory Services

CHIGAN S

IVFRS

mhaakenstad@usenergyservices.com



MICHIGAN ST

UNIVERSI

- Michigan State Overview
- CHP Plant Transition
- Coal Capacity Reduction
- Developing a Natural Gas Management Strategy

Campus Detail

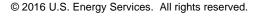
- Founded in 1855
- 5,200 acres of campus grounds
- 532 buildings, 103 academic buildings
- 21.7 million square feet of building space
- 50,543 students (fall 2015)
- 15,000 on-campus residents
- 11,100 faculty and staff

IVERS

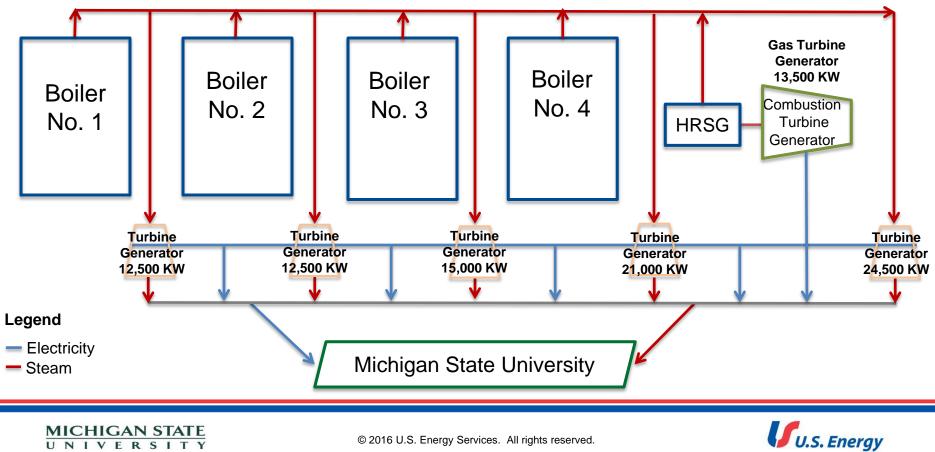
 1 CHP power plant Combined = Heat + Power (Electric)

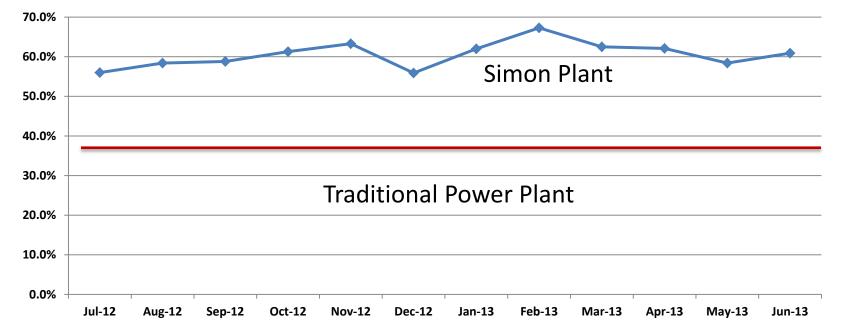
What We Do

- Steam for comfort heating, hot water, process steam, and yes, cooling.
- Electricity
- Water: 18 wells producing 1.3B gallons annually


Simon CHP Plant Detail

- Built in 1965, 5th in the series of MSU plants.
- 4 boilers (1,200 kpph max) of steam 900 psig, 83<u>5F</u>
- I HRSG (115 kpph max) with duct firing
- All boilers on a common header
- 85 MW across 5 steam turbine generators
- 13.5 MW on 1 NG combustion turbine (black start)
- 21 MW grid tie-line with local utility





Simon CHP Plant

UNIVERSITY

Total plant efficiency (steam and electricity) July 2012 - June 2013

Conclusion: Simon plant CHP efficiency is continually above 55%, which is favorable compared to non-CHP efficiencies (39%). This results in significantly less CO2 and other emissions.

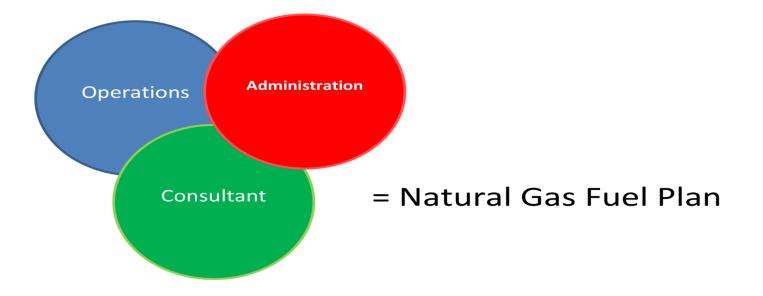
MICHIGAN STATE UNIVERSI

Moving From Coal & Natural Gas to Gas Only

Fiscal Year 2008

MICHICAN STATE

UNIVERSIT


Fiscal Year 2017

Coal: 248,320 Tons
 Coal: 0

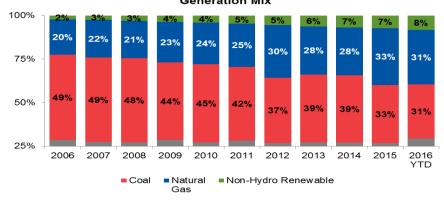
Natural Gas: .46 BCF
 Natural Gas: 6.4 BCF

Fiscal Year 2016 – Forming The Energy Team

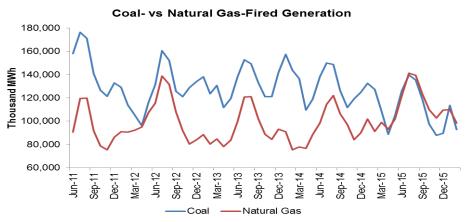
Coal Capacity Reduction

MICHIGAN STATE

UNIVERSITY

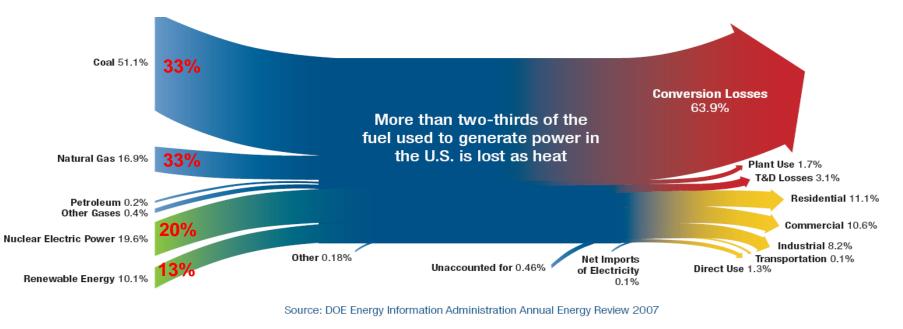


Scheduled retirements only include coal units for which there has been a firm retirement date reported between 2016 and 2020. As of Feb. 19, 2016. Source: SNL Financial, a part of S&P Global Market Intelligence Map credit: Alip Artates



Shift in Generation Mix

- With relatively inexpensive natural gas and coal-fired generation units, the subject of increasing environmental regulation, the generation mix is shifting
- Natural gas and "non-hydro renewables" (i.e. solar and wind) are eroding coal's share of the mix
 Coal- vs Natural Gas-Fired Generation

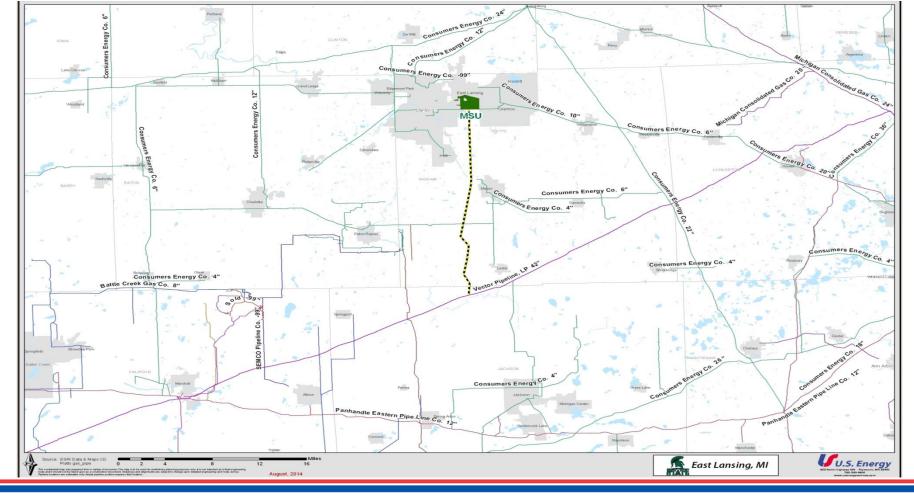


VER

The Ins and Outs of Electricity Generation

[2015 DOE updated %]

Developing Natural Gas Fuel Plan


- Pipeline study/LDC rate negotiation
- Risk aptitude measurement
- Risk management plan

MICHICAN S

UNIVERS

- Plan implementation & quarterly monitoring
- Creation of competition among multiple suppliers

© 2016 U.S. Energy Services. All rights reserved.

MICHIGAN STATE UNIVERSITY

Energy Risk Management Survey Results

U.S. Energy Price Risk Management Survey

Objectives	Lock Margins	Budget Driven	Mitigate Volatility, Some Budget Consideration		Market Driven	Score		Subtotal	Total
Objectives of the Price Risk Management program	1	2	3	4	5	2.5	x 0.50	= 1.25	1.25

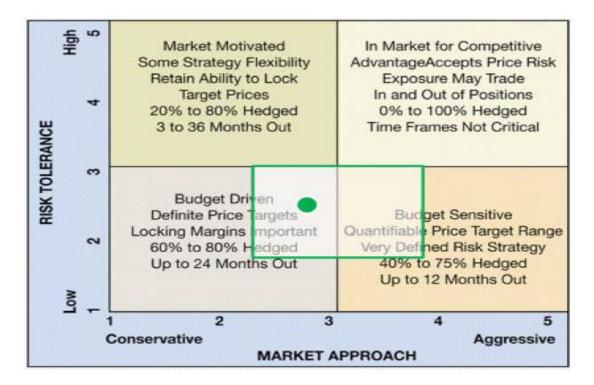
Price Volatility		No		Sometimes		Yes	Score				Subtotal	Total
Do you hedge other commodities?	Score	1	2	3	4	5	2.67	×	0.17	=	0.45	
Have you analyzed the effect of hedging on your business?	Score	1	2	3	4	5	2.67	×	0.17	=	0.45	1.56
Have you analyzed the effect of basis on your burner tip price?	Score	1	2	3	4	5	4	×	0.17	=	0.67	

MARKET APPROACH SCORE

2.81

Financial Impact		No				Yes	Score				Subtotal	Total
Can you tolerate a large swing in energy prices? (Impact on earnings, cash flow, budget, etc.)	Score	1	2	3	4	5	2	×	0.25	=	0.50	1.75
Can you charge more for your product/service if energy prices rise?	Score	1	2	3	4	5	2.5	×	0.50	=	1.25	1.75
Other Factors (Company Culture)		Budget		Neutral		Market	Score				Subtotal	Total

Is "success" measured against Budget or Market?	2	3	4	5	2	×	0.25	=	0.50	0.50


RISK TOLERANCE SCORE

2.25

Energy Risk Management Survey Results

MICHIGAN STATE

UNIVERSITY

Natural Gas Risk Management Plan

- 1. Institution Background & Document Purpose
- 2. Input to the Risk Management Strategy
- 3. Goals
- 4. Implementation
- 5. Timeframe(s)
- 6. Hedge Thresholds
- 7. Layering Approach
- 8. Position Tracking and Management
- 9. Hedging Tools
- 10. Authority Requirements and Gas Purchasing
- 11. Communication
- 12. Feedback

MICHIGAN STATE

NIVFRSI

13. Program Review

Energy Risk Management Survey Results

Prioritized Goals:

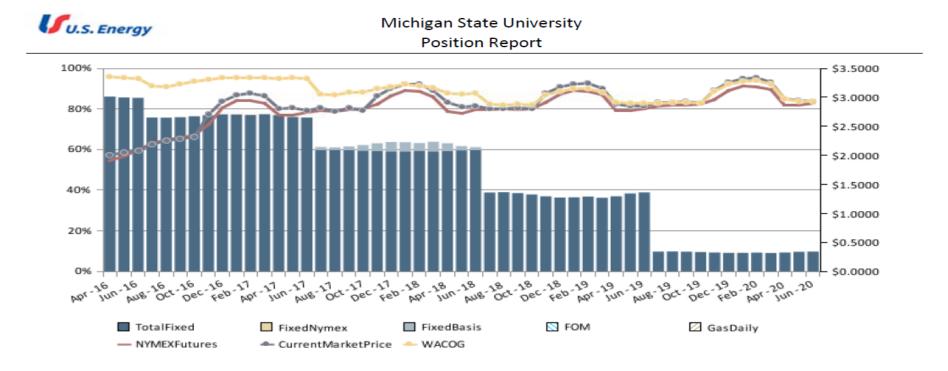
1. Primary: Manage natural gas input costs so that they are at or below budgeted levels on an annual basis

- 2. Execute hedges that limit long term upside risk
- 3. Obtain budget and long term protection in a manner that minimizes the cost of protection

Strategy Hedge Ranges

MICHIGAN STATE

UNIVERSITY



Position Report

MICHIGAN STATE

UNIVERSITY

Questions?

Bob Ellerhorst

Director of Utilities & Waste Management rlellerh@pplant.msu.edu

Matt Haakenstad

VP, Advisory Services mhaakenstad@usenergyservices.com

Bruce Hoffarber

VP, Market Development bhoffarber@usenergyservices.com

Thank You for your Time!

