
STRATEGICALLY TRANSITIONING FROM

STEAM TO HOT WATER

JACOBS°

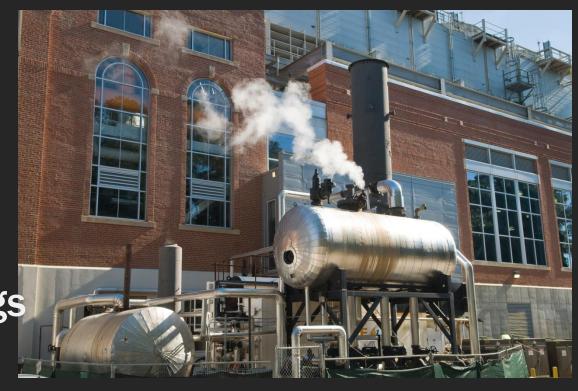
OUTLINE

- Brief History
- Hot WaterAdvantages
- Site Distribution Analysis
- Summary

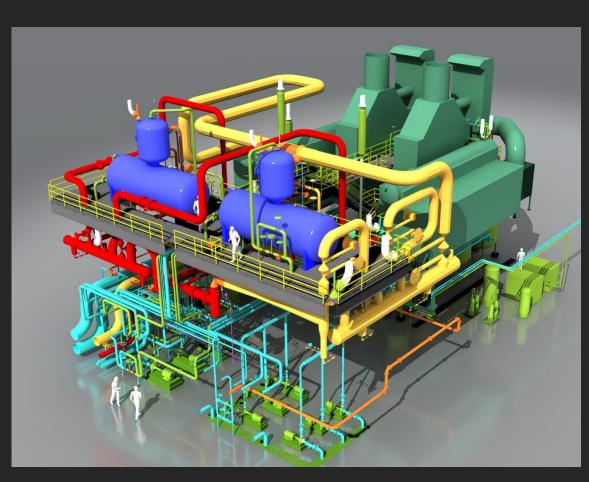
JACOBS

A BRIEF DISTRICT HEATING HISTORY

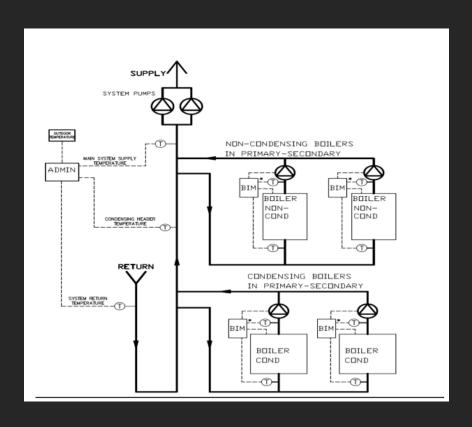
- Holly Steam Combination Company


 – First Commercial District Heating (1877)
- Denver's District Steam
 System Oldest in
 Operation (1880)
- Post WWII Era Low Cost Energy
- District Energy St Paul Largest North American Hot Water District Heating (Present)

JACOBS


HOT WATER SYSTEM ADVANTAGES

- Less required maintenance
- Less steam
 knowledge in
 developing
 workforce
- Modern buildings utilizing hot water heating


JACOBS°

- Steam System Components:
 - Boiler
 - Deaerator
 - Feedwater Pumps
 - Blowdown Vessel
 - Flash Tanks
 - Condensate Receivers
 - CondensatePumps
 - Water Treatment

- HW System Components:
 - Boiler
 - Primary/SecondaryPumps
 - Air Separator
 - Expansion Tank

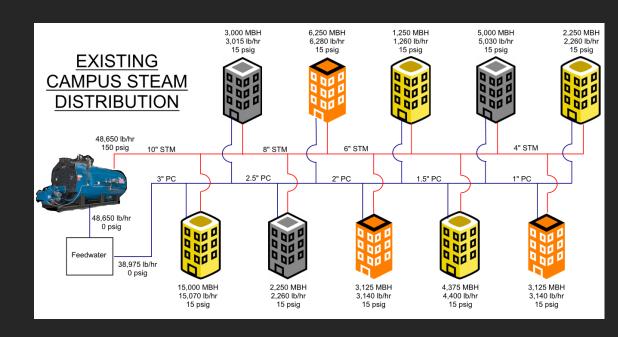
- Lower flue gas temperature increases combustion efficiency
- Supply water reset control
- Less idle/cycling losses
- Lower conductive losses to ambient
- Little/no make-up water costs
- Lower chemical treatment costs

- Increased System Efficiency
 - Solar Thermal Heating
 - Geothermal
 - Cogeneration
 - Condensing Boilers
 - Thermal Storage
 - Heat Recovery Chillers
 - Waste Heat Recovery

HOT WATER SYSTEM ADVANTAGES – DISTRIBUTION

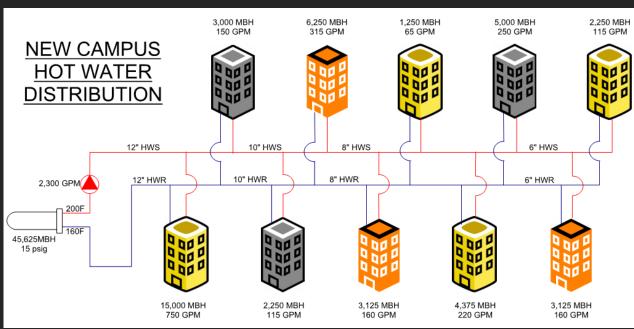
- Lower temperatures = less heat loss
- Utilize lower cost insulating materials
- Safety System leaks are less dangerous
- Higher likelihood of corrosion in condensate return system
- Reduced number of expansion loops
- No condensate recovery vaults.

HURDLES IN CONVERSION


- Replacement of existing Steam
 Distribution piping.
- Heat Transfer stations and customer connections must be replaced.
- Higher pumping energy

SITE DISTRIBUTION ANALYSIS - STEAM

- 10 Buildings
- ~ 1 Mile of
 Distribution Piping
- 150 psig
 Distribution
- 15 psig at Building
- Steam-to-Hot Water Heat Exchangers at Building
- Atmospheric Pumped Condensate



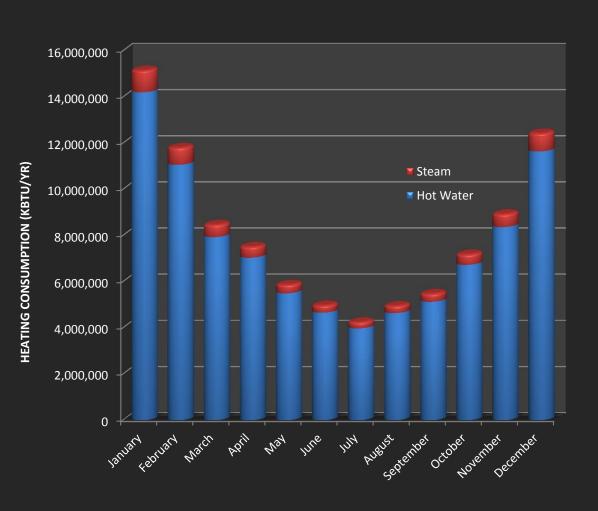
	Total Building Demand		Distribution		Condensate Return		Heat Input	
Distribution Type	Heat Load	Mass Flow	Losses	Total Flow	Flash Losses	Total Return	Req'd	
	МВН	lb/hr	lb/hr	lb/hr	lb/hr	lb/hr	МВН	
Steam	45,625	45,850	3,100	48,950	1,325	47,625	48,000	

SITE DISTRIBUTION ANALYSIS - HOT WATER

- Same Network as Steam
- 2,400 MBH in Steam Demand Savings
- 149.6°F at furthest building.

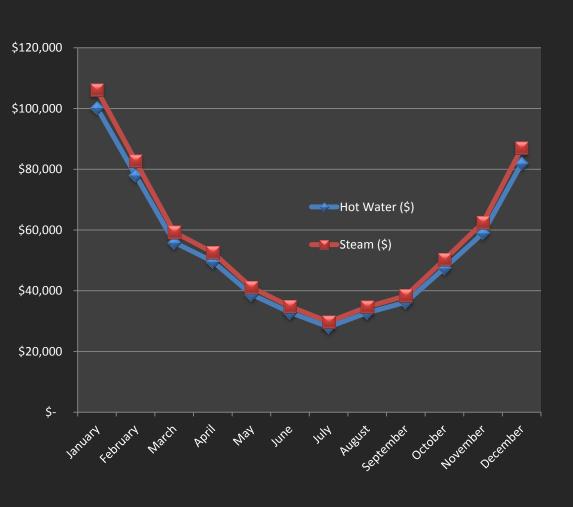
	Total Building Demand			Heat Innut			
Distribution Type	Heat Load	Flow Rate	Losses	Total Flow	Pump		Heat Input Req'd
	МВН	GPM		GPM	НР	kW	МВН
Hot Water	45,625	2,300	-	2,300	101	75	45,625

SITE DISTRIBUTION ANALYSIS - DEMAND


	Total Building Demand		Distribution		Condensate Return		Heat Input	
Distribution Type	Heat Load	Mass Flow	Losses	Total Flow	Flash Losses	Total Return	Req'd	
<i>''</i>	МВН	lb/hr	lb/hr	lb/hr	lb/hr	lb/hr	МВН	
Steam	45,625	45,850	3,100	48,950	1,325	47,625	48,000	

	Total Building Demand			Heat land			
Distribution Type	Heat Load	Flow Rate	Losses	Total Flow	Pump		Heat Input Req'd
	МВН	GPM		GPM	НР	kW	МВН
Hot Water	45,625	3,045	-	3,045	101	75	45,625

5% Reduction in Heating Demand


SITE DISTRIBUTION ANALYSIS - CONSUMPTION

- Heating Consumption
 - 950MMBTUpeakdifference
 - 505MMBTUaveragedifference

SITE DISTRIBUTION ANALYSIS - CONSUMPTION

- Heating Consumption
 - 950MMBTUpeakdifference
 - 505MMBTUaveragedifference

SITE DISTRIBUTION ANALYSIS - COST ANALYSIS

Option		Simple				
	Capital	Energy	Water	Nat Gas	Maintenance	Payback
Steam vs Hot Water	(\$1,859,123)	(\$3,973)	\$390	\$42,423	\$84,400	15.09 Yrs

- 20 Year Life Cycle Considered
- 49 Steam Traps (Five Year Life Expectancy)
- New Water to Water Heat Exchangers
- New Variable Volume Hot Water Pumps (60 HP ea)

SUMMARY

- Less Maintenance Required on Hot Water Systems
- Hot Water Distribution is more Energy Efficient

JACOBS®