

# Texas A&M Microgrid and Electrical System Study



# Introduction of Texas A&M Microgrid Study

- Purpose Why are we studying the TAMU electrical system?
- ▶ Process How do we want the distribution system to react?
- ▶ Plan What is the application of the data we saw?

#### Presenter:

- ▶ Brad Shuffield, P.E., Class of '05 (bshuffield@burnsmcd.com)
  - Sr. Electrical Engineer Burns & McDonnell

#### Thanks to:

- ► Tyler Hjorth, P.E., Class of '91
  - Manager, Electrical Services TAMU UES



Question: How many Aggies does it take to screw in a light bulb?

# Purpose: Electrical System Study Need

Why study the campus electrical distribution system?

- ▶ No defined response for system contingencies
  - Goal is automated system response
  - Answer the "What if" question
- ▶ ETAP model not updated for new loads
  - New equipment and buildings have been added to campus recently
- ▶ No comprehensive relay protection philosophy
  - Various methods of system protection methods are used
- Manual control of substation capacitors
- Building generators not tested and underutilized

#### **Microgrid Definition:**

"A microgrid is a group of interconnected loads and distributed energy resources within clearly defined electrical boundaries that acts as a single controllable entity with respect to the grid. A microgrid can connect and disconnect from the grid to enable it to operate in both gridconnected or island mode." U.S. DOE MEG



# Overview of TAMU Electrical Distribution System

- 138kV to 12.47kV Substation
  - Separation of Utility Plants and Campus Buildings
- Utility Plants
  - Central Utility Plant: CUP
  - Satellite Utility Plants: SUP1/SUP2/SUP3
- Campus Distribution
  - Switchgear Distribution Points
  - Building Feeders
- Control Systems
  - Ovation
  - SCADA
  - Distribution Automation





# **Process: System Study Approach**

#### How do we improve on the electrical system?

- Analyze and define system response options
  - Utilize available meter data
- Update ETAP model
  - Short circuit study
  - Arc-Flash study
- Document relay settings philosophy
  - Correct coordination issues
  - Propose standards for new relays
- Analyze substation capacitors
- Investigate generators for paralleling



# Plan: Automate Electrical System Response

#### The "What If" Scenarios

- ▶ 138kV-12.47kV Substation Transformer Loss
- ▶ 12.47kV Bus Loss
- ▶ 138kV Bus Differential Trip
- Loss of Utility Power (Island Mode)
- ▶ Total Campus Power Loss



#### **TAMU Electrical Goals:**

- 1. Keep the lights on.
- 2. Parallel transformers as needed.
- 3. Utilize on-site generation.
- 4. Shed campus load as last option.



### 138kV-12.47kV Substation Transformer Loss

Campus Distribution: XFMRs T1, T2, T3, T6, T8

#### **System Reaction:**

- 1) One XFMR/ Two Bus
- 2) Three XFMR / Four Bus
- 3) Overload XFMR
- 4) Shed Load



### 138kV-12.47kV Substation Transformer Loss

Utility Plants: XFMRs T4, T5

#### **System Reaction:**

- 1) One XFMR/ Three Bus
- 2) Bus 106 Backup



#### 12.47kV Bus Loss

- ▶ Cause: Bus Differential Trip
- Analyzed downstream switchgear meter data
- ► Campus Distribution: Bus 101, 102, 103, 106, 108
  - 1) Switch Downstream Switchgear Breakers
  - 2) Shed Load
- ▶ Utility Plant: Bus 104, 105, 107
  - 1) Switch Downstream Switchgear Breakers
  - 2) Reduce Power Output of Generation





# 138kV Bus Differential Trip

- ▶ 138kV Bus #1 XFMRs T1, T2
  - Only campus distribution affected
  - 1) One XFMR/Two Bus (T8 backup)
  - 2) Two XFMR/Four Bus
  - 3) XFMR Overload
  - 4) Load Shed

- ▶ 138kV Bus #2 XFMRs T3, T4, T5, T6
  - CUP generation transfers to island mode
  - 1) One XFMR/Two Bus (T8 backup)
  - 2) Two XFMR/Four Bus
  - 3) XFMR Overload
  - 4) Load Shed



# **Loss Of Utility Power**

#### Island Mode

- Automated Grid Separation
  - ► GTG-1, STG-2, STG-4 switch to island mode
  - Campus generators provide power to buildings
  - ► Thermal process coordination
- Island Mode Operation
  - ▶ Generation = Load
- Return to Utility
  - Automatically Synchronize to BTU







# **Loss Of Utility Power**

#### No Utility Power or Campus Generation

- Zero Voltage Start (ZVS) Sequence
  - CUP Diesel Generator starts GTG1
  - ▶ GTG1 supplies power to CUP
- Mechanical Systems Interaction
  - Steam production balance
  - Automation through Ovation system
- Energize select campus loads through breaker operation
- Return to Utility
  - Automatically synchronize



### **Microgrid Control Solution**

#### Main Functions

- Breaker Control
  - Switch breakers according to proposed response
- Automatic Islanding/Fast Load Shedding
  - Detection before generator trip
- Automatic Generator Synchronization
- Power Factor Control
- ► Emergency Generator Integration
- Control System Interaction



# **Microgrid Control Solution**

### System Diagram



# **Relay Protection Philosophy**

- ► Goal: Trip downstream relays before upstream
  - System coordination vs. equipment protection
- Analysis of 15kV relays
  - .rdb files
  - TCC curves
  - Trip equations
- Proposed changes
  - Improve transformer protection
  - Coordinate instantaneous on main feeders
  - Improve ground fault coordination
  - Simplify trip equations



# **Relay Coordination Curves Before/After**



#### **Substation Power Factor Control**

- 3000kVAR units at each 15kV substation bus
  - Manually switched
- ▶ 3 of 7 units not functioning
  - Recommend new, staged units
- ► Goal: Maintain .97pf
- Interaction with control system



# **Generator Investigation**



- Current Issue: How to test building generators using load?
- ► Future Issue: How to use excess generator capacity to provide power to campus in an outage?
- Analyzed ratings of equipment and ratings of generators 500kW and larger.



Result: Most generators can be paralleled to the system safely for testing and back up on a campus level.

# **Steps Forward and Application**

- Next Steps
  - Detailed Design of the Microgrid Control System
  - Complete a detailed ZVS sequence
  - Install metering at main 15kV system buses
- ▶ What is the application for your system?
  - Know where power is flowing on your system
  - Maintain current electrical system model with relaying
    - Identify system coordination improvement
  - Ask the "What-if" questions about your equipment
    - Generation behind the meter
    - Roadmap of potential automation & island operation
  - Pro-active about system operation





