Central Plant GHG Emissions Reduction Options

- Increase efficiency of existing operations (high efficiency burners, modern controls and/or VFDs)
- Convert from coal to No. 2 oil or gas
- Convert from oil or gas to a biogenic fuel like landfill gas or digester gas.
- Convert from oil or gas to a biogenic fuel like wood waste.
- A new option is available to convert to biogenic Renewable Fuel Oil (RFO)

RFO Conversion at a Glance

- RFO is a liquid biomass fuel made from wood waste products
- Because RFO is considered to be biogenic, greenhouse gas emissions from RFO are 88% lower than heavy oil, and 81% lower than natural gas.
- NOx and CO emissions are similar to natural gas and typically less then No. 2 oil.
- Virtually any firetube or watertube boiler can be converted to fire RFO.

• Cost per Btu is less than No. 2 oil, but typically more expensive than natural gas

Typical GHG "life cycle" GHG Factors for Combustion

Energy Component	GHG emission factor	
Oil	207 #/MMBTU	
Natural Gas	141 #/MMBTU	
Electricity	0.7 to 1.6 #/kwh	
RFO	25.7 #/MMBTU	

Memorial Hospital

Youngstown Thermal

Bates College

Memorial Hospital North Conway, NH

- Objective was to reduce costs and be "green"
- Contract for long term supply of RFO signed April, 2014, first deliveries began summer of 2014.
- Designed to operate on RFO with #4 oil backup. Provides fuel optionality
- First winter was coldest Feb. on record, and RFO was exclusive fuel.
- RFO has been the primary fuel since August of 2014
- Annual RFO use is approximately 300,000 gallons. First year target savings of \$160,000 realized

Memorial Hospital

- Two 200 HP Cleaver Brooks boilers
- Retrofits installed
 - 15,000 gallon free standing double walled SS storage tank
 - RFO unloading module
 - Fuel delivery system
 - 2 Cleaver Brooks OEM RFO/4 oil burners- 8.45 MMBTU/hr each
 - Cleaver Brooks control system
- Operational plan RFO as primary fuel, with 4 oil backup
- Efficiency over 87% <4 ppm CO levels- good combustion</p>
- Over 700,000 gallons of RFO consumed to date
- Approximate GHG reduction 24,000 MT

RFO Easily Integrated with Existing Infrastructure

- 15,000 gallon stainless steel storage tank
- Fuel unloading module
- Insulated above ground piping

- Cleaver Brooks OEM dual fuel burners
- Redundant fuel piping
- Integrated CB controls

Memorial Hospital Delivery System, Burner and Controls

Youngstown Thermal

- 4 boilers -nominal 120,000 MMBTU hour heat input
 - 3 coal, 1 natural gas
 - Converted natural gas boiler to dual fuel- Nat gas/ RFO
- Retrofit includes
 - 40,000 gallon single wall SS storage tank, with containment
 - 2 nominal 60 MMBTU/hr dual fuel burners
 - Fuel delivery skid
- Marked efficiency improvement- low CO levels
- Full commercial operations- savings being realized

Youngstown Thermal Retrofit

Youngstown Thermal Fuel Delivery System

Youngstown Thermal Dual Fuel Burners

- Burners designed for natural gas and RFOany combination
- Two burners fired into one furnace each with a nominal capacity 60MMBTU/hr
- Third party source tested at 65 ppm NOx, 0.2 ppm SO2, 3.1 ppm CO, and 0.1 ppm VOC

Youngstown Thermal MCC, BMS, and Controls

ENSYN

Youngstown Thermal RFO Fuel Guns

Bates College Lewiston, Maine

- Signed ACUPCC pledge May 16, 2007
- Pledge date for Carbon neutrality 2020
- Scope 1 GHG emissions were approximately 40% of total of Scope 1-3
- Central steam plant represents approximately 70% of the Scope 1 emissions
- Committed to initially replace ~ 70% of fuel mix at CP with RFO, added fuel redundancy

- Resulted initially in an annual reduction of over 80 % of CP GHG emissions from 3080 MTCO2e to 532 MTCO2e
- Bates will additionally save > \$600,000 over the life of the contract

Bates College

- 3-700 HP boilers, natural gas and 2 oil fired
 - Conversion of 1 boiler initially, with plans to convert a second boiler-Preferred Utility burner integrated with existing Preferred Utilities controls
 - Fuel delivery skid sized for 2 boilers
 - 20,000 gallon double wall SS storage tank
 - Steam to hot water module
- Operational plan is to run one boiler on RFO, 2 boilers on standby on natural gas and 2 oil- anticipate this will be sufficient for all but very peak loads.
- Fully operational- < 4 ppm CO running at 85%+ efficiency

Burner Assembly – 29.4 MMBTU per hour

Fuel Delivery Skid & Storage Tank

- Duplex pumps & strainers
- Heat exchanger
- Motor control center
- Instrumentation
- Recirculation valving
- Separate fuel unloading skid

- Double wall storage tank (20,000 gallon of capacity)
- High and low level alarms
- Flame Arrestor

Feedstock Requirements

- Feedstock comes from either harvest residues or commercial thinnings from a sustainably managed forest.
- Harvest residues would most likely either be left in the forest or burned in the forest if not used for RFO
- Forester is required to provide an affidavit that feedstock has met the above criteria and that the feedstock did not originate from environmentally sensitive land or government owned land.
- Each batch of fuel has a certificate that follows it which details where the feedstock originated.
- Our feedstock suppliers are generally larger logging operations because they have the ability to provide the necessary certification for the RFS2 program.

Depending upon guality and

16' - Saw log - sent to sawmil

RFO Produces Significant Environmental Benefits

- RFO is a direct substitute for fossil fuels
- RFO provides fiber owners with an opportunity to enhance their sustainable forest management practices
- Greater use of sustainable forest management practices reduces the wildfire risk to timber and forest stands
- RFO is considered to be "biogenic' for GHG emission purposes

Woody Biomass to High Value Products

ENSYN

What is RFO?

- RFO is a homogeneous, organic liquid obtained from the thermal conversion of biomass
- Has the appearance of motor oil
- It is polar in nature and does not readily mix with hydrocarbons
- pH >2.5, specific gravity of 1.2
- Contains less metals and sulfur than petroleum liquids
- Accepted as a biogenic fuel

RFO Specification Sheet

Property	Analytical Method	Typical
Water Content	ASTM E203 (Karl Fisher titration)	<24 wt%
pH	ASTM E70-07	>2.5
Density @ 15 °C	A STM D4052	10.0 lb/USgal
Specifc Gravity @ 15 °C		1.20
Kinematic Viscosity @ 40 °C	A STM D445	25 cSt
Higher (Gross) Heating Value, Moisture Free	A STM D240	9905 Btu/lb
Higher (Gross) Heating Value, As-Is	Calculated	7528 Btu/lb
Lower (Net) Heating Value	Calculated	6842 Btu/lb
Solids Content	A STM D7579	0.1 wt%
Pour Point	A STM D97	-13 °F
Elemental Analysis (moisture & ash free)		
Carbon	A STM D5291	54.87 wt%
Hydrogen	A STM D5291	6.67 wt%
Nitrogen	A STM D5291	0.16 wt%
Sulphur	A STM D4294	<0.05 wt%
Oxygen	Calculated, by difference	38.25 wt%
Ash	A STM D482	<0.15 wt%

RFO – Made Elsewhere but Will Be Stored Locally

- Existing facility outside of Ottawa Ontario, Quebec facility comes on line in late 2017
- Current projects under development are located in three distinct regions [7] states in the US
- Initial RFO volumes will be made outside of Massachusetts but will be stored in the immediate vicinity. No different than petroleum-based heating oils that are stored in Boston Harbor, Portsmouth, etc.

