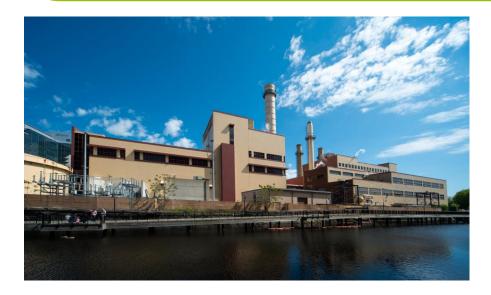


Veolia Veolia EEEP Roderick Fraser, LEED GA, Tim Griffin, LEED AP


Veolia Boston – Cambridge System is Internationally Recognized as No. 1

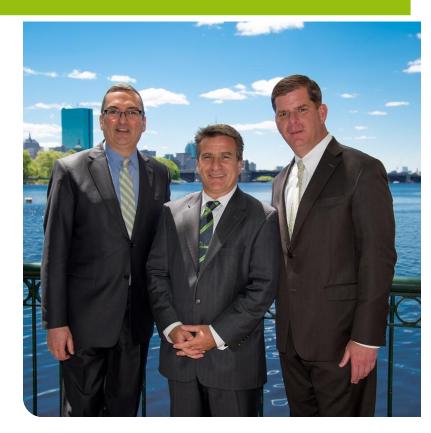
- Veolia's Boston-Cambridge network was selected as the 2015 'System of the Year' from a pool of 350 district energy systems in 26 countries.
- Recognizes Veolia's sustainable investment in Combined Heat and Power (CHP) at its Kendall Station facility
- Reducing greenhouse gas emissions by 475,000 tons
- Improving the environment by removing our heat discharge from the Charles River
 ecosystem.

Reliable and Resilient Energy Infrastructure

Secure Energy Source

- District Energy/CHP keep going when the grid goes down
- Dual fuel (No. 2 oil & NG) capable at all locations- can switch mid-operation
- 2.5 Million gallons of fuel oil storage onsite
- Redundant to utility grids
- Ability to "black start"
- Multiple sources of feed water
- Back up generation
 - Kendall Co-gen
 - Back up boiler plant at Kendall
 - Agreement to purchase steam from MIT
 - Agreement to purchase steam from Veolia operated CHP plant in Cambridge

Boston Green Steam Project


Boston Green Steam long Term Investment - \$112M:

- Kendall Acquisition: \$50 million
- Reconfiguration: \$35 million
- Charles River Transmission Pipe:
 \$27 million
- Cambridge wide condensate system improvements
- Job Creation:
 - 。 \$21 million in labor costs
 - 147,500 man hours welders, pipe fitters, insulators

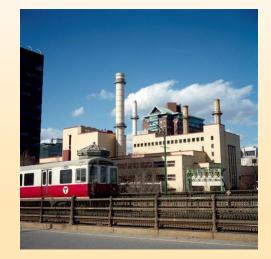
Reducing Boston's Carbon Footprint

Today, after completion of new "Green Steam" project 475,000 500,000 450,000 400,000 310,000 350,000 300,000 250,000 200,000 150,000 80,000 100,000 52.000 50,000 0 Estimated Tons CO2 Equivalent # of Cars Avoided Removed from Roads

"Green Steam" through existing infrastructure

- Boston carbon reductions of 475,000 tons/year, equivalent to:
 - Removing more than 80,000 cars from the streets; 600 football fields of solar PV
- Produces 75% of Boston's district heating requirements
- Eliminates waste heat from the Charles River ecosystem

Boston-Cambridge Service Territory


Boston/Cambridge District Energy and Cogeneration (CHP)

District energy meets the critical energy requirements of **250 customers** in the central business district of Boston, the biotechnology corridor of Cambridge, and the Longwood Medical Area

Major Customers Served

- 70% of high-rise office buildings in Boston 90,000 workers
- All large healthcare facilities in Boston 1,740 hospital beds
- Hotels in Boston
- Universities in Boston
- Biotechnology leaders in Cambridge
- Pharmaceutical leaders in Cambridge
- 20 million sq ft of new and renewals last 3 years

The Kendall Timeline

· **2005**

• Veolia (Dalkia) acquires the Cambridge District Energy System

• **2006**

• Veolia purchases Tri-gen North America (including Boston system)

- · **2007**
 - Veolia (Dalkia) commissions two new 200 psig Naturag Gas fired boilers for Cambridge system (replacing oil fired boilers)
- · **2010**
 - Commitment made to remove heat from Charles River Eco-system
- · **2013**
 - Construction of the 7,000 ft "Green Steam Pipe" between Cambridge and Boston
- · **2014**
 - Veolia acquires Kendall Station with partner I-Squared
 - Invest in reliability, plant/system longevity and control upgrades to GE7FA gas turbine
 - Conversion to dual fuel (natural gas, ultra low sulfur diesel fuel)

The Kendall Timeline

· **2015**

- Veolia buys out Dalkia
- Upgrade water treatment system with additional capacity
- Implement plant 'black-start' capability ISO New England
- Plant capable of restoring steam service during blackout
- · **2016**
 - New Back Pressure Steam Turbine/ (BPST) and Air Cooled Condenser (ACC) eliminates water withdrawals and heat discharge to the river
 - Replaces 1950's Westinghouse turbine

LEED V4 applicability

•LEED BD+C

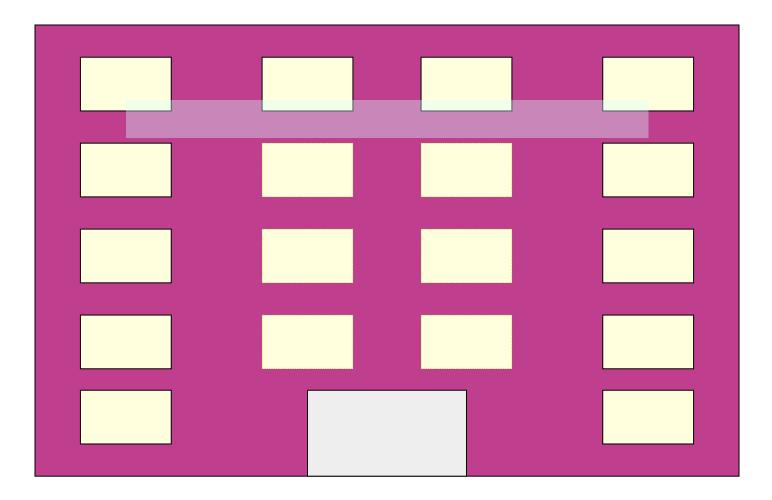
Points available under the Energy and Atmospheric Credit

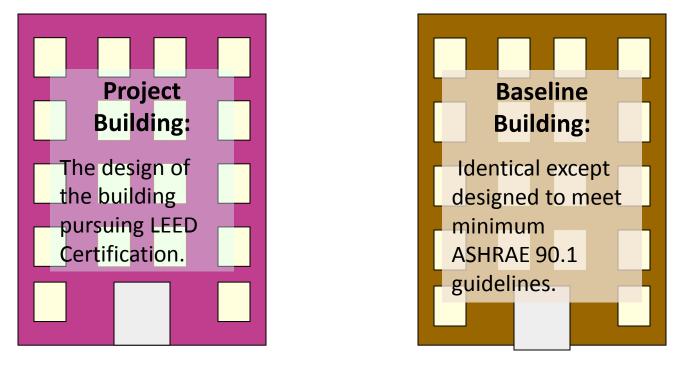
LEED BD+C

What is it?
How does Veolia
Boston impact an application for LEED NC?

Energy Efficiency Optimization

Why Energy Matters for LEED?

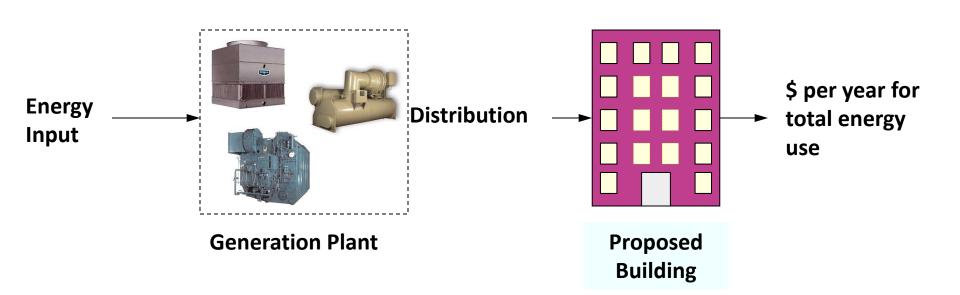

18 out of 110 points

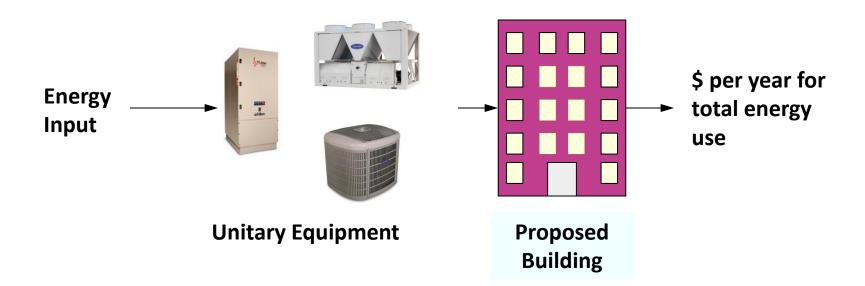

Goals & Application – Energy

- Optimize Energy Performance.
 - Goal: Demonstrate energy performance greater than required by the pre-requisite.
 - For energy modeling, this is referred to as Option 1, Path 2 – Aggregate Building/DES Scenario.

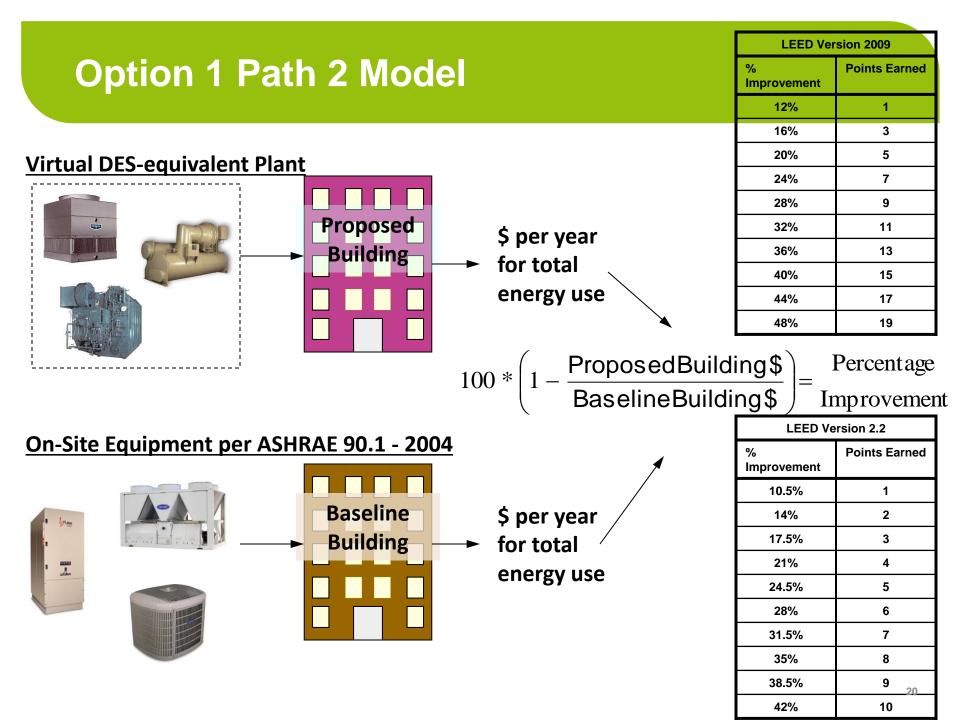
ENERGY USE IN DOLLARS

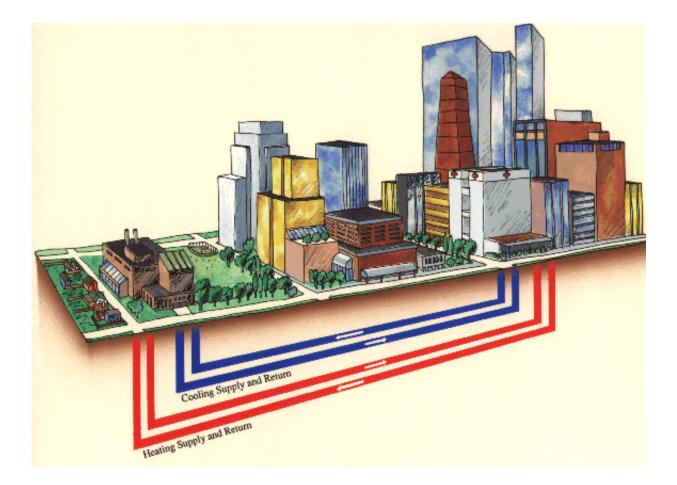
Modeling Software Options

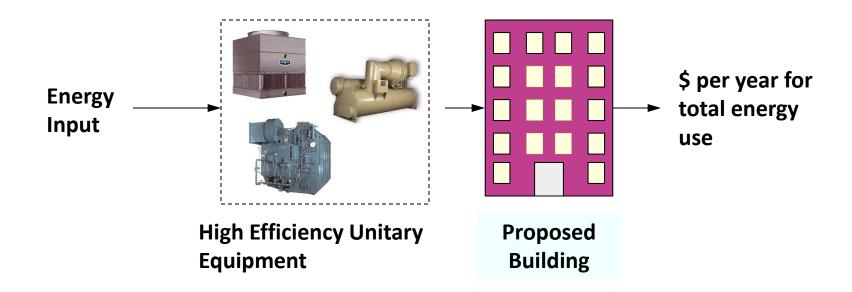




District Energy Analysis

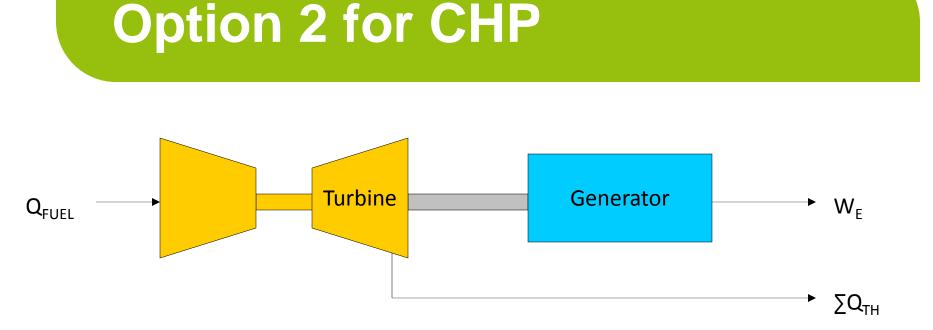



Code Minimum Comparison



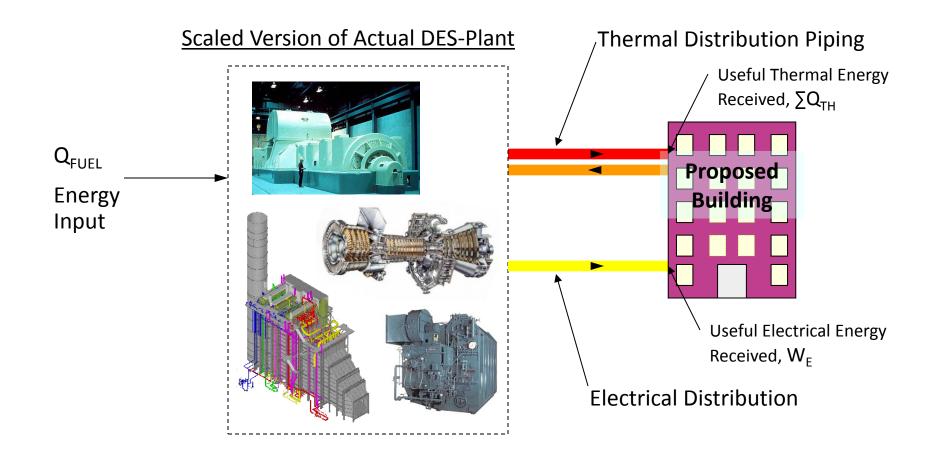
District Energy - Challenges

Real Comparison



Combined Heat and Power (CHP) in DES

 Q_{FUEL} – Sum of all fuel used by the CHP.


 W_E – Net useful Electrical Power, produced by the CHP.

 ΣQ_{TH} – Net useful Thermal Output, produced by the CHP.

Reference: http://www.epa.gov/chp/basic/methods.html

Free Electricity

The Economists – October 15th, 2013

 Traditional power plants that use coal, gas or nuclear energy typically only convert a third of the energy they produce into electricity. The rest is wasted as heat. A combined district utility can convert 40% of that energy into electricity and 40% to heat buildings, wasting just one-fifth at the generation stage, though another 7% is on average is wasted in distributing the heat around a city.

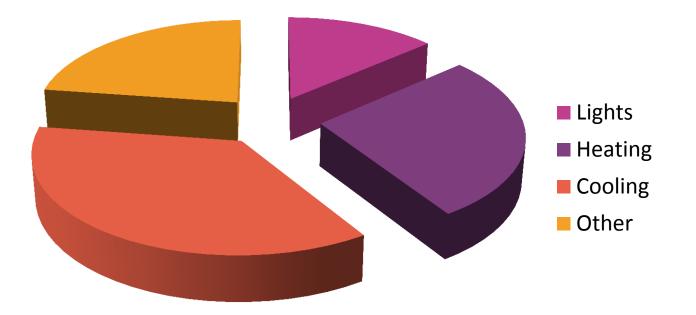
How Does VB Compare?

Typical Electric Production = 33% efficiency

- •Electrical = 33%
- Steam = 25%
 CHP = 58%

Veolia Boston's Numbers

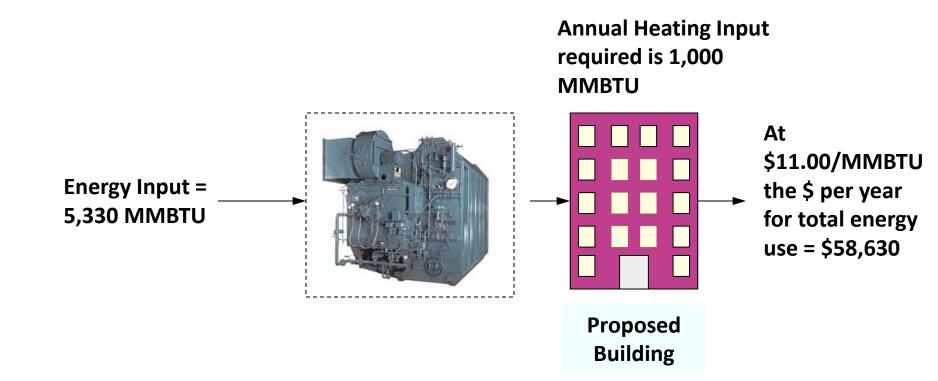
For every 1 BTU of Steam Required, the Plant Uses 5.33 BTU's of Natural Gas


Veolia Boston's Numbers

For every 1 MMBTU of Steam Required, the Building receives credit for 0.53 MWh of Free Electricity.

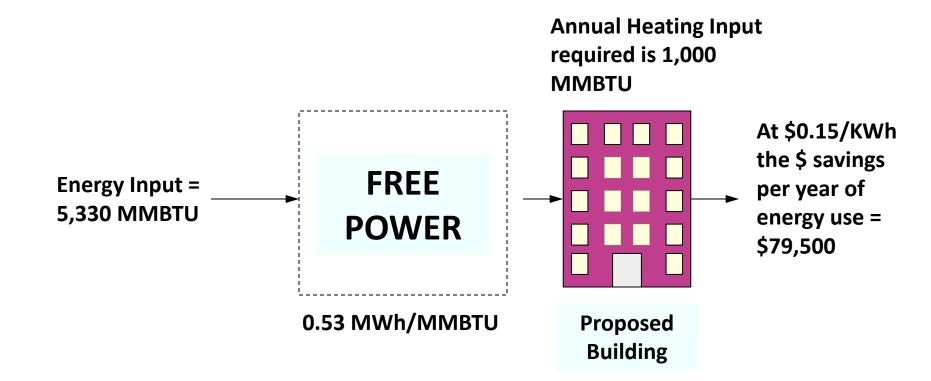
Real Comparison

Annual cost of energy in \$



Our Variables

Natural Gas Costs: \$11.00/decatherm Electrical Cost = \$0.15/KWh •Blg. Boiler Eff. = 95%



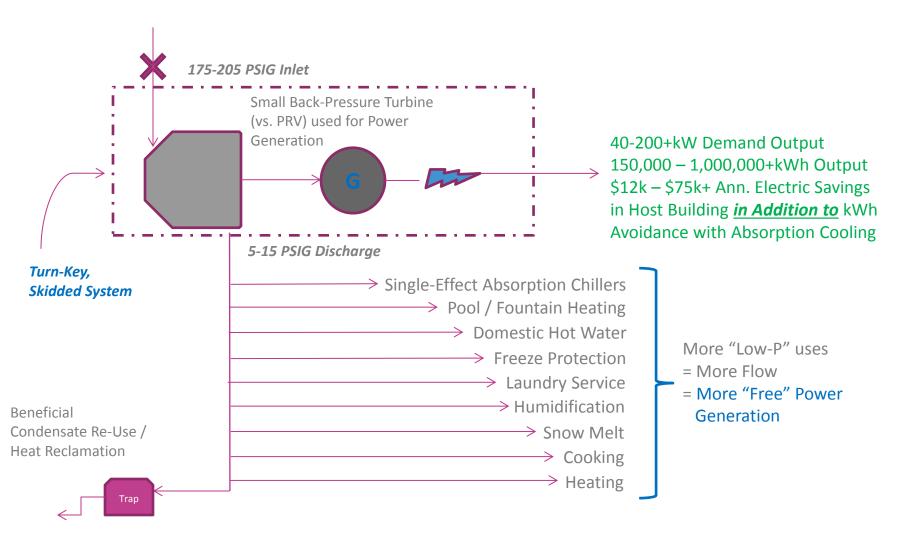
Modeling Methodologies

Modeling Methodologies

How Does VB Compare?

 $_{\circ}$ VB Cost of Heat = (\$20.87)/MMBTU 95% Efficient **Building boiler** Cost of Heat = \$11.58/MMBTU

Since the electric power produced through VB's processes is double the efficiency of traditional power production, the benefits of VB's CHP are recognized and credited thru LEED.



•For every 1 MMBTU of steam received, the building can credit 533 KWh of FREE

Electricity!

Options for Platinum

→ High-T Sterilization

Turbine-Driven Chillers

Double-Effect Absorption Chillers

 Quarterly Column in District Energy Magazine
 tim.griffin@rmf.com
 919.941.9876

Veolia and LEED

- In 2015 RMF Engineering conducted a LEED analysis of Veolia's Boston-Cambridge system
- Benefits of Veolia's CHP are recognized and credited thru LEED.
- For every 1 MMBTU of steam received, the building can credit 534 KWh of FREE Electricity!
- A project can obtain 10 12 more LEED points through DES than self performance with gas boilers.

Connecting to District Energy:

Tim Griffin, PE, LEED AP, IDEA USGBC Liaison

Editor's Note: "LEED + District Energy" Is a quarterly column providing information about the U.S. Green Building Council's LEED rating system and how it applies to buildings lerved by district energy systems.

at a great annual conference In Bostone My wife and I got the chance to bring my four kids to New England for the first time. It really is a beautiful area. They enjoyed Boston's culsine, the many sites, the hotel and the people at the conference. The biggest highlight was a Segway tour we took of the city - a fun way to see the sights. L of course, was fairly nervous when they told us we would not be riding our Segways on the sidewalk but on the streets. "like any vehicle." Really? I'm riding on two wheels and a stick! That did not seem to grant me the protection associated with "any vehicle." However, we survived without a scratch and had a blast at the same time.

Our conference host, Veolia, did a great job. Bill DiCroce and his team put on a great phon. Congrahulations is them on winning IDERs System of the Year Award for their Broton and Cambridge system. And what a system It is as welt. With the mome completion of a seam distribution pipe across the Crainer Elver, It can now efficiently produce electricity at the Kendall Station plant on the Cambridge tide of the river and distribute waits team how the CHP process to both Boston and Cambridge. As a result, building customers use lass inpat energy for each Blu of steam consumed, and both cities reduce their carbon footprine. From a sustainabiity standpoint, this is certainly a win-win.

But as good as Veolia's district steam system may be, the question is, Do customers get R?

WHAT'S THE CUSTOMER'S PERCEPTION?

This spring Lhad the opportunity to work with Veola's Vincent Martin, Rod Fraser and other team members to analyze their Boston and Cambridge system from a LEED (Leadership in Energy and Environmental Design) certification standpoint. The question to be answered was, What would be the impact on a potential building customer's LEED application of tying into Vecila's district steam system? This is a complies question in which many variables come into play. In the case of Veola's Boston and Cambridge system, the main issue is energy efficiency. How many more or fewer points will a customer be awarded in a LEED application by connecting to Veolla's district steam compared to installing energy-efficient In-building boilers? LEED is a point-based system, and points are valuable.

For a OPP system like Woola's, the large energy efficiency variables in determining activeable LEID points include the building outstemm's natural gas and electricity rates. As is the economic case for all OPP systems, the higher the price of electricity relative to the price of natural gas, the genere the economic value of the OPP system. Bothor has historicatly high elec-

© 2013 International District Energy Association. ALL RIGHTS RESERVED.

tricity rates but not as high natural gas rates. This certainly helps in the analysis.

Another key variable is the percentage of the total stream produced from OPF Large district energy systems often product from a OPP process but generate the balance of the stream from traditional boilers. The greater the pecentage of water stream, the greater the potential for customers to even LED points, in Neoton and Cambridge, the majority of the stream produced Is a watte product of the OPP process.

The final variable is the percentage of a potential building customer's total energy consumption that will be used for heating the building and for domestic hot water. The higher the percentage of energy needed for heating, the more points that can be exemed in LEED. In New England, where is long and cold, we all remember storks of mountains of now in Boston earlier this year. Again, this helps in Boston district energy customers' LED analysis.

CHP - AN IDEAL SITUATION

In all cases above, the variables that impact a potential building customer's LED application all fevor trying into Veola's Boston and Cambridge system. In fact, when you include the ownall energy efficiency of the system, the case is even clearer. I developed a "points calculator" for Veola's system to determine - based on actual utility rates for natural gas and

ω

