

Introduction

- Project Examples
- Why Dual Fuel?
- Considerations
- System Comparison

University of Minnesota

Need for CHPP

- Replace aging equipment with reliable, sustainable, and cost-effective technology
- Increasing steam demand (campus growth)

Reliable

Sustainable

Cost-effective

University of Minnesota

Why choose dual fuel?

- Campus currently operates on multiple fuels
- Existing no. 2 fuel oil storage infrastructure
- Taking advantage of interruptible gas rates
- High pressure utility gas not available

University of Minnesota

Solicitation Requirements

Dual Fuel CTG

15 – 23 MW, sized to maximize life cycle cost savings

Dual Duct Fired HRSG

250K pounds per hour

Fuel Type

Natural gas or No. 2 fuel oil

Bids Received

CTG Manufacturers: 4

HRSG Manufacturers: 3

Dual Fuel Combustion Turbines

- ✓ Improved technology
- ✓ Multiple vendors and therefore better competition
- ✓ Emission control to meet EPA and state requirements, such as dry low emission technology
- √ Improved reliability

Things to Consider

Reliability and availability

Financial impacts

Space impacts

Operations and maintenance

Environmental and air permitting

Consideration: Reliability and Availability

Reliability and Availability Financial Impacts

Space Impacts

Operations and Maintenance

- ✓ Additional equipment
- √ Fuel change
- √ Gas or gas compressor outage

Consideration: Financial Impacts

Reliability and Availability

Financial Impacts

Space Impacts

Operations and Maintenance

- ✓ Interruptible gas rate
- ✓ First cost 10-15% additional CTG cost
- √ Impacts to balance of plant / design
- ✓ Infrastructure

Consideration: Space Impacts

Reliability and Availability

Financial Impacts

Space Impacts

Operations and Maintenance

- ✓ Do you have enough space?
- ✓ Auxiliary equipment
- ✓ Existing Storage?

Consideration: Operational Impacts

Reliability and Availability

Financial Impacts

Space Impacts

Operations and Maintenance

- ✓ Steam production
- ✓ Power production
- √ Fuel changeover

Consideration: Maintenance

Reliability and Availability

Financial Impacts

Space Impacts

Operations and Maintenance

- ✓ Auxiliary system maintenance
- ✓ Expensive fuel nozzles
- √ HRSG fouling higher particulates

Consideration: Environmental Impacts

Reliability and Availability

Financial Impacts

Space Impacts

Operations and Maintenance

Environmental

- ✓ Higher Nox
- ✓ Ammonia use and storage
- ✓ Public perception
- √ Fuel storage
- ✓ Additional hazard areas

JACOBS

System Comparisons

A&M

UT

Natural gas only GE LM2500

UMinn

Dual fuel GE LM2500 natural gas and No. 2 fuel oil

Natural Gas System

Fuel Oil System

- Unloading
- Storage tanks
 Atomizing
- Pumps

- Filtration

- Purge system
- Waste oil storage

Single Fuel LM2500

Dual Fuel LM2500

Heat Recovery Steam Generator

- Separate fuel trains
- Atomizing system
- Overall minimal size impact

Summary

√ Financial impacts

✓ Operational impacts

✓ Need for onsite power production

