

Session 7A – How to Better Control Legionella Presented by: Thomas Muilenberg www.miox.com

Agenda

- Framing the key issues regarding legionella control
- Why biofilm control is important
- Options for halogen source
- On-site generation overview
- Advantages of on-site generation
 - Cost
 - Safety
 - Effectiveness
- Case studies

Legionnaires' Risk

Google news search

Legionnaire's disease lawsuit v. Castleton Comfort Inn can expand Albany Times Union - Mar 14, 2015 ... for the New York State Energy Research and Development Authority. ...

for the New York State Energy Research and Development Authority. . naires' Disease, a severe form of bacterial pneumonia, ...

Many documented cases from systems with a free available chlorine (FAC) residual from delivered bleach.

FAC residual and biofilm control are required for long term risk management.

New York City investigates spike in Legionnaires' disease CBS News - Jan 13, 2015

NEW YORK -- City health officials are trying to determine if a common source is to blame for a spike in cases of **Legionnaires' disease** in the ...

Co-op City towers contaminated with **Legionnaires' Disease** Highly Cited - New York Daily News - Jan 13, 2015

Explore in depth (60 more articles)

NYC officials investigating Legionnaires' Disease outbreak New York Post - Jan 7, 2015

"Providers should consider **Legionnaires' Disease** when evaluating patients presenting with signs of pneumonia," the Health Department said ...

NYC Health Officials Investigating Spike In Legionnaires' Disease ... CBS Local - Jan 8, 2015

Explore in depth (5 more articles)

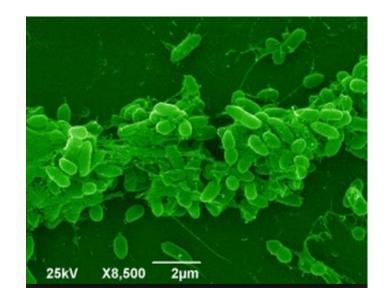
Legionnaire's Disease Cases on Rise in New York City

Newsmax.com - Jan 9, 2015 An increased number of **Legionnaire's disease** cases are being reported in the Bronx, and **New York** City Health Department officials are trying ...

Framing the Key Issues

- Effectiveness is determined by two factors
 - Remove biofilms, control Legionella
 - Maintain stable disinfection residuals
- Regulatory monitoring requirements for disinfectants
- Safety chemical generation and storage
- Cost capital and operational

Bleach (Chlorine) is not sufficient alone

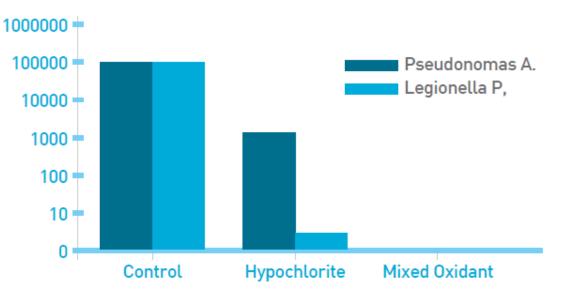

Biofilm Removal is needed

Inactivating Legionella is easy with Chlorine when it does not hide behind the biofilm

Inactivating Pseudomonas aeruginosa that makes up the Biofilm is not easy

Options to remove the Biofilm:

Chlorine Dioxide
 On site generated Chlorine
 Organic Biocides

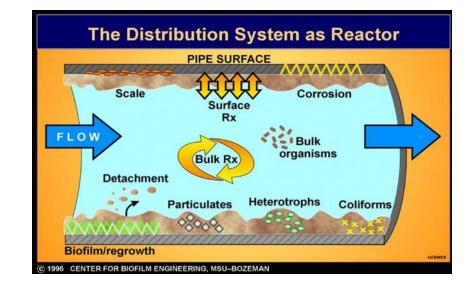


Johnson Matthey

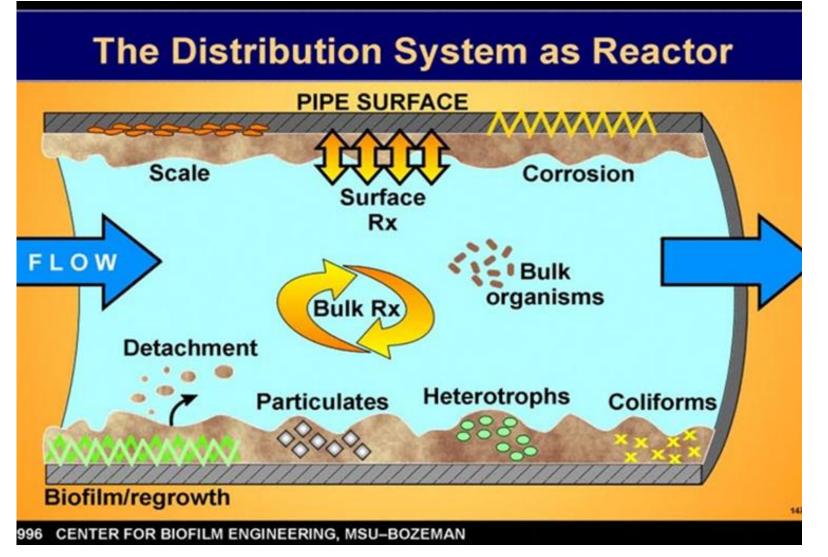
BETTER LEGIONELLA CONTROL

MIOX

No Legionella detected at 2 mg/L Mixed Oxidant Solution (MOS) in 10 minutes. Study conducted by Larry Barton PhD, University of New Mexico, "Disinfection of Simulated Cooling Tower Water". Hypochlorite is a good Legionella disinfectant when the bacteria are planktonic (free floating). However Pseudomonas, a biofilm former organism, is more difficult to kill and can also form a protective biofilm layer for Legionella bacteria to harbor. MOS removes the biofilm and kills both microorganisms more effectively than hypochlorite.



ON-DEMAND CHEMISTRY



Biofilm Harbors Legionella

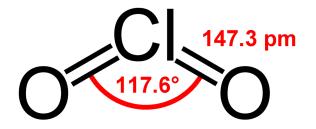
- Free-floating Legionella is easy to kill
- Harbors in biofilm, which protects organisms
- MIOX removes biofilm controls Legionella

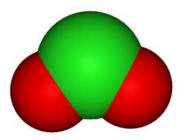
Johnson Matthey

Concept of biofilm formation in pipes

How Do You Control Biofilm, Then?

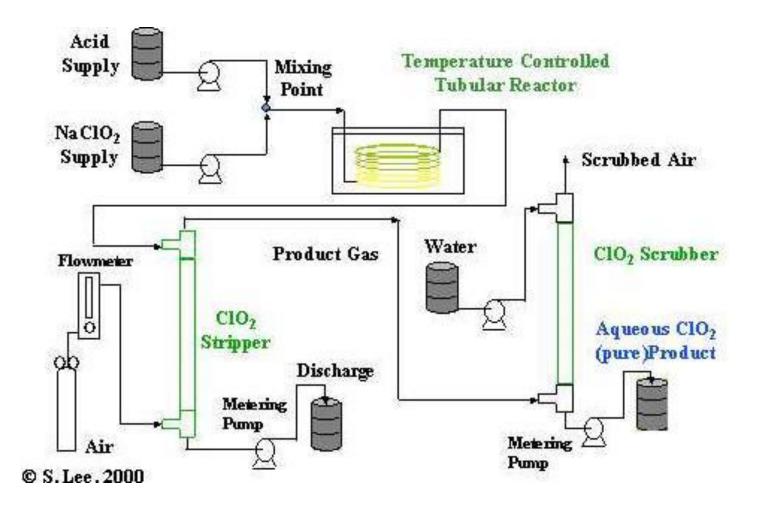
- ASHRAE 188 simply recommends the use of a halogen (plus a monitoring/flushing program)
 - Regular hypochlorite/bleach
 - Cannot penetrate the biofilm layer
 - Other alternatives required


Most Common, Effective Methods Include:


- Chlorine Dioxide
- On-site Generated Mixed Oxidant Solution (MOS)

Chlorine Dioxide

- Chemical formula: CIO2
- Is a gas, yellowish-reddish in color
- Does not hydrolyze in water, simply stays in solution as a dissolved gas



Chlorine Dioxide

- Gas is highly toxic
- Cannot be shipped as a gas, must be generated on site or in stabilized solution
- Most common methods of generating are:
 - Precision mixing of sodium chlorate and acid
 - Electrolyze sodium chlorate

Johnson Matthey

A Safety Note on the Generation Process

- NaClO2 is a strong oxidizer pure solid, reaction product of leaked ClO2 gas, or solution of NaClO2 spilled continues to be a hazard.
- NaClO2 solution dried in contact with combustible material can ignite spontaneously.
- Pure, dry NaClO2 is shock-sensitive even walking on it can cause detonation.
- White's Handbook (2011, pp. 752-753) is very explicit on the hazards.

Chlorine Dioxide Pros

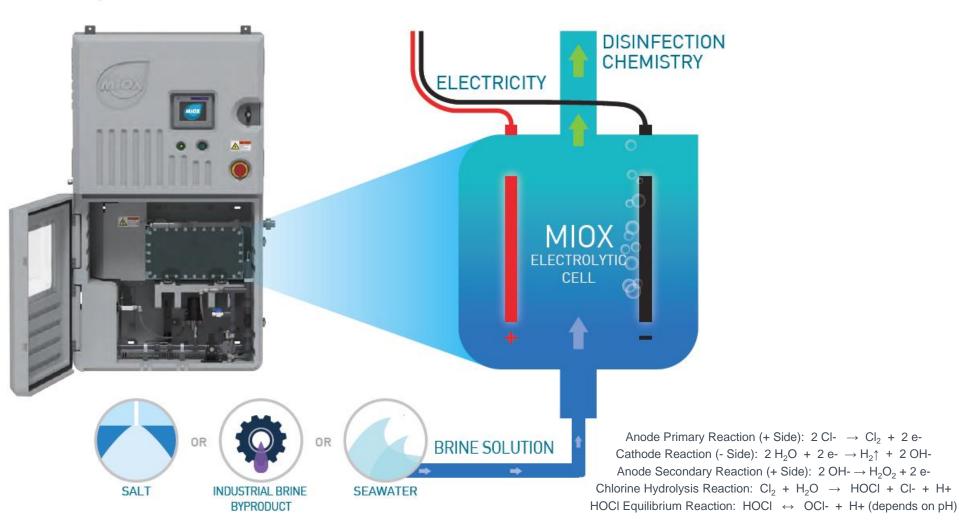
- Excellent at biofilm removal and control
- Good broad-spectrum biocide
- Does not react with many other contaminants in the water
 - In certain applications can get desired kill at lower dose



Chlorine Dioxide Cons

- Storage of base chemicals can be an issue
- Gas is very toxic, leaks must be handled very carefully
- Limited by regulation to maximum dose rate

On-Site Generation of MOS



- MIOX generates a powerful chemical using only salt, water and electricity
- In the food & beverage industry often on-site generation (OSG) is referred to as electrochemically activated water (ECA) or electrolyzed oxidizing water (EOW)

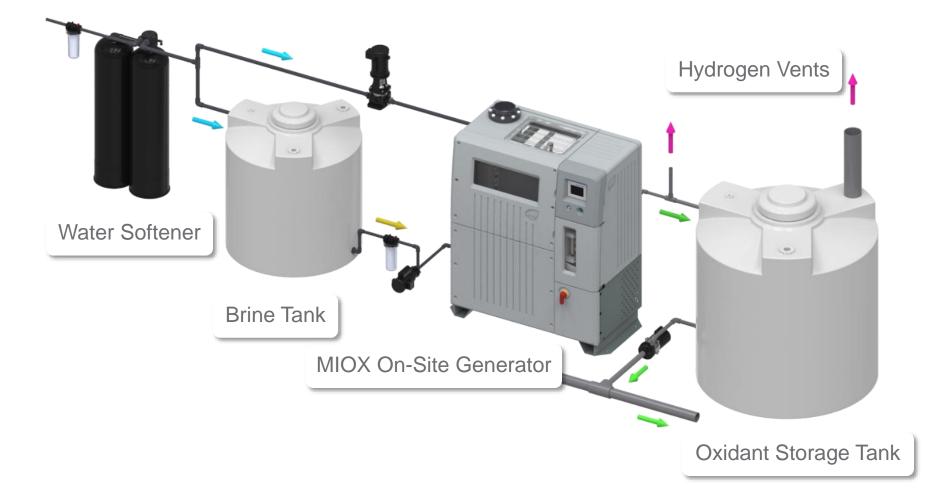
MIOX ELECTROLYSIS PROCESS

The electrolytic cell of a MIOX on-site chemical generator uses salt combined with water and electricity to generate disinfectant at the point of use.

HYPO HYPOCHLORITE

MOS HYPO + PEROXIDE

18



Cell Reactions

- Anode Primary Reaction (+ Side): 2 Cl- \rightarrow Cl₂ + 2 e-
- Cathode Reaction (- Side): $2 H_2 O + 2 e \rightarrow H_2 \uparrow + 2 OH$ -
- Anode Secondary Reaction (+ Side): $2 \text{ OH} \rightarrow H_2O_2 + 2 \text{ e}$ -
- Chlorine Hydrolysis Reaction: $Cl_2 + H_2O \rightarrow HOCI + Cl + H +$
- HOCl Equilibrium Reaction: HOCl \leftrightarrow OCl- + H+ (depends on pH)

Typical Process Flow

Mixed Oxidant Solution Strips Biofilm

22 days

AFTER MIOX

CASE STUDY

Spa in Japan previously using **Bulk Hypochlorite** 1.5 mg/L had Legionella cases. In 5 hours of Mixed Oxidant solution biofilm started sloughing

BEFORE MIOX

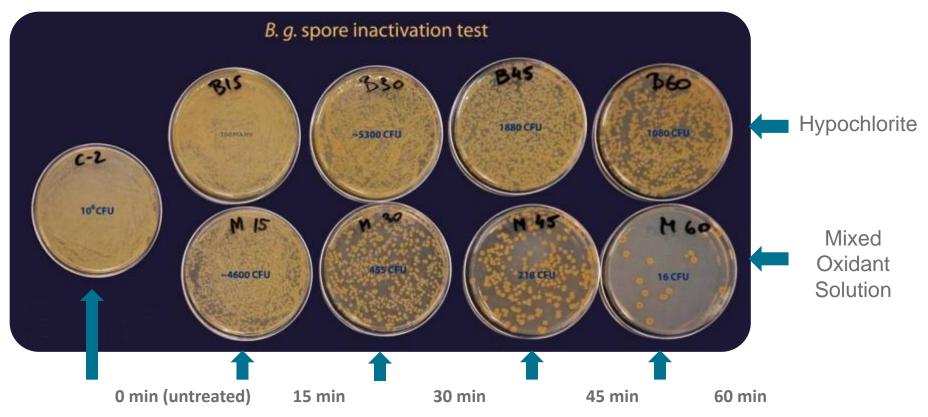
Dose: 1.5 mg/L Hypo

Residual: 0.2 mg/L

- Biofilm eliminated
 No bacterial hits
 - Dose: 0.6 mg/L Hypo
 - Residual: 0.4 mg/L

CASE STUDY

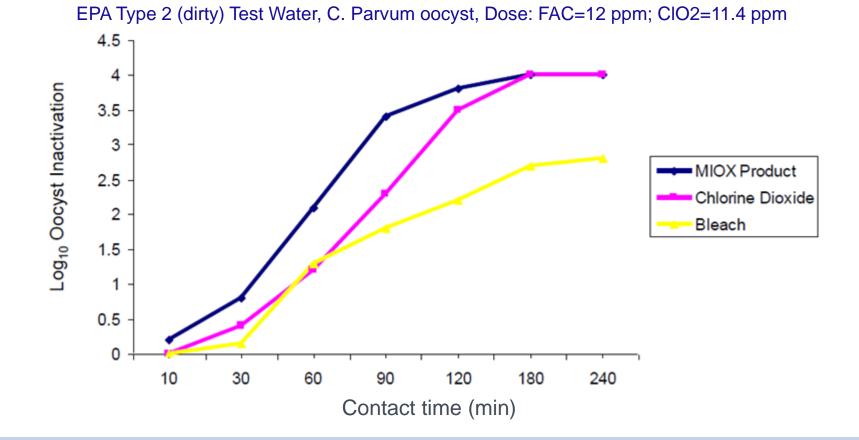
A city in Texas was using **Gas Chlorine** where brown biofilm slime on pipes in distribution system commonly noticed.


Spa Installation – Important Observations

- Initial dosing was identical to original conditions
 - i.e. Dosing was begun at 1.5 mg/l as FAC
- Over time, as biofilm was removed, the resultant residual increased
 - Initially, 1.5 mg/l dose resulted in 0.2 mg/l residual as FAC
 - As residual increases, base dosing was reduced
 - After 22 days, initial dose was reduced to 0.6 mg/l
 - Biofilm was visibly lower when inspected via boroscope
- Even with lower input dose, the resultant residual was still higher
 - Evidence that biofilm was presenting a major chlorine demand
 - Visual evidence implicated that even though bleach maintained a residual, biofilm was not being effectively controlled
 - An eventual 60% reduction in dose still resulted in a 100% increase in residual due to much cleaner recirculation loop

Mixed Oxidant Solution - Visible Effect of Trace Hydrogen Peroxide with Hypochlorite

CDC Study - Inactivating Bacillus globigii (B.g.)


Bajszar, 2009; Validated in 3rd party studies at the Centers for Disease Control and Prevention

How does Mixed Oxidant solution compare to Chlorine Dioxide?


• Comparing effectiveness against cryptosporidium, which is a very difficult to kill organism

JM 🛠

Johnson Matthey

On-Demand Chemistry is also Safest Chemistry Option

- Regulations
 - Trend toward the safest
 - Limit on hazardous chemical storage

JM 🛠

- Non-public incidents
 - Recent near misses of Cl2 leak at two large industrial facilities South East US
- Sustainability
 - Less trucks, less chemicals
 - Lower carbon footprint

MOS Pros

- Inherently safe base chemistry
 - Salt is only concentrated chemical
- Very effective biofilm control
- Wide range of available dosing
- Easy to control, monitor and report
- Lowest operating cost

MOS Cons

- Capital cost can be a challenge
 - Can investigate other procurement and/or rental options
- May be space constraints at site

Summary Table; ClO2 vs. MOS

	Standard "Bleach"	ClO2	MOS
Effectiveness	Poor biofilm control but decent biocide	Excellent biofilm control	Excellent biofilm control and all purpose oxidizer Ex. When the feed water is well waters or municipal water
Regulatory Monitoring Requirements	Monthly or Quarterly Can be easily automated	Daily for ClO ₂ and chlorite	Monthly or Quarterly Can be easily automated
Safety	Dangerous at full strength	Hazardous	Non- hazardous
Cost	~ 1.25 - \$1.50/lb FAC (average U.S.)	~ 1.80 - \$2.50/lb FAC	~ \$0.55/lb FAC

Case Studies

Large Illinois Teaching Hospital

JM& Johnson Matthey

Effective Legionella Control at 7,000 ton cooling tower at Neurosurgery Center

AFTER MIOX

BEFORE MIOX

Cooling tower sump looking down from the hot deck

Problem

 Positive Legionella counts in the cooling system: 7,000 ton cooling tower

Solution

 Replaced bulk bleach with on-site generated Mixed Oxidant Solution chemistry

Results After Using MIOX

- Avoids millions in potential lawsuits for Legionnaires'
- No positive Legionella counts since MIOX installation July 2011
- Reduced hospital's liability for hazardous chemicals
- Visibly cleaner slime and green algae is gone

ON-DEMAND CHEMISTRY

MIOX Proprietary and Confidential- DO NOT DISTRIBUTE

Hospital Case Study:

Biofilm removed, Legionella non-detectable in 8 days

<complex-block></complex-block>				
Day	Pseudomonas	Legionella		
	(CFU/mL)	(CFU/L)		
Day 0	0-95	Detected		
Day 5	60 (hot)	ND/1 L		
	0 (cold)			
Day 8	0 (all points)	ND/1 L		

- In 2006, water system noncompliance delayed hospital commissioning
- Legionella and Pseudomonas (a biofilm-former) consistently detected using chlorine dioxide (0.5 ppm dose)
- Disinfectant residual and bacterial sampling conducted at 1400 sampling points
- Within 8 days, MOS dosed at 50 ppm showed non-detectable Pseudomonas and Legionella counts

University of New Mexico Hospital (UNMH)

Secondary treatment of potable water

- Two 8 lb Systems
- One for potable water system
- One for cooling towers
- Systems purchased mainly due to concerns about Legionella control

Mixed oxidant replaces both chlorine and bromine, saving over \$150,000/year in chemical costs for one tower

(Sept, 2008) U15 Main Condenser Tube Sheet after extended run – before cleaning, after non- MIOX treatment

Northern Indiana Power Service Company

(June, 2010) U15 Main Condenser Tube Sheet after extended run – before cleaning, after 2.5 Months of MIOX treatment

- 300 ppd Mixed Oxidant
- Replaced both chlorine and bromine for cooling tower water disinfection
- Partial retrofit using existing tanks
- Expect 3 additional towers to switch to mixed oxidant after success at Tower #15
- Reduced price of disinfectant/oxidant by generating it on-site.
- Generating a safer chemical below the 1% threshold for consideration as a hazardous material.
- Improved chemical efficacy
- Reduced maintenance
- Early phases of operation in 2010 show promising data

Thank you for your attention!