PowerSecure

CAMPUS ENERGY 2016 The Changing Landscape

February 8-12, 2016 | JW Marriott Austin Hotel | Austin, TX

February 11, 2016

Topic/Goals

EPA NESHAP and NSPS Compliance Requirements for Emergency and Non-Emergency Distributed Generation Assets

AGENDA

- What is Demand Response?
- How does Distributed Generation enable Demand Response?
- How do EPA Regulations affect Distributed Generation assets?
 - Existing Installations
 - New Installations
- Case Studies

What is Demand Response?

- Typically, the supply and demand on the electric grid is balanced at the utility/power plant level by increasing electrical supply. However, there are circumstances where the supply cannot meet the demand in the traditional sense
- Demand Response is *reducing* demand at the customer level to alleviate capacity issues on the grid (called *Capacity* programs) –
 - CAN BE EMERGENCY OR NON-EMERGENCY PROGRAMS
 - Customer can use Load Management (ex: reducing lighting levels with BAS)
 - Customer can also use *Distributed Generation* (ex: diesel generation behind the meter) to offset their load
- Utilities and System Operators often provide incentives for customers to participate in Demand Response programs, allowing them to invest in infrastructure to handle the required operations

What is Demand Response?

- Another type of Demand Response is called Peak Shaving or Peak Load
 Management
- Depending upon the rate structures behind a given utility, the customer may be billed
 on what's termed a *Coincident Peak (CP)*. This CP is the customer's load measured
 when the entire grid is at it's highest capacity in a given time period (monthly,
 annually, or other given period)
- Customers who can predict when these CP measurements will be taken can reduce their load or switch to generation to decrease the CP charge on their bill

Distributed Generation As An Investment

Regulated Markets

- Traditional "Peak Shaving"
 - Coincident Peak (CP) Rate Structures
 - Generation Rider/Offset Credits
 - Ranges from \$0 \$200+/kW annual benefit

Deregulated Markets

- Traditional "Demand Response"
 - Capacity and Frequency Programs
 - Emergency and Non-Emergency Programs
- Load Management
 - 4CP/5CP Management
- Price Response
 - Realtime Market Response
 - Strike Price

EPA Regulations and Distributed Generation

NESHAP (40 CFR Part 63)

- June 12, 2006 and older
 - Requires engines participating in NON-EMERGENCY programs to bring engines to base emissions level by May 2013
 - Oxidation Catalyst
 - Continuous Parameter Monitoring System
 - Crankcase Filter
 - Maintenance Records
 - ULSD

NSPS (40 CFR Part 60)

- June 12, 2006 and newer
 - Requires diesel engines participating in NON-EMERGENCY programs to meet manufactured year Tier ratings for nonemergency purposes

2006-2010: Tier 22011-2014: Tier 4i

2015 - ???: Tier 4F

 Requires natural gas engines to meet manufactured year "EPA Certified" ratings for non-emergency purposes

Recent Changes in EPA Regulations

DC Circuit Court of Appeals Ruling

- May, 2015
 - As part of NESHAP/NSPS guidelines, the EPA had created an exception to federal air permit requirements for engines participating in "Emergency Demand Response" (EDR) Programs, typically designated as EEA Level II Emergency Programs.
 - The exception allowed Emergency Designated engines to run up to 100 hours per year for these EDR programs.
 - A DC Circuit Court of Appeals Ruled against the EPA exception, allowing a stay until May 1, 2016 for the change to take effect. The ruling is still not finalized.
 - If the ruling holds, all engines must meet Federal non-emergency designations to run for any kind of Demand Response program.

York Hospital Case Study

- York Hospital (7.5MW) PJM
 - Traditional Approach
 - Facility required expansion, renovation, and replacement to meet the growing needs of their emergency power infrastructure.
 - Initial design/approach focused on 4.5MW of Tier 2 (emergency only) generation to serve their emergency needs only.
 - Generation As An Investment Approach
 - Facility investigated meeting capacity needs of entire facility with Tier 4 generation,
 enabling them to participate in Demand Response to drive revenue
 - For a 15% price increase, facility received 66% more generation (7.5MW) to backup their entire facility and enroll 5.8MW into PJM's Emergency Demand Response program
 - Simple payback on Tier 4 vs. Tier 2 premium was 3 years through Demand
 Response revenues, and facility received value of backing up entire facility

Cold Storage Case Study

- Cold Storage Facility, MD PJM
 - Traditional Demand Response Approach
 - Customer was building new facility, required backup generation for their operations
 - Initial design/approach focused on Tier 4 generation owned by the customer, participating in Demand Response
 - Generation As An Investment Approach 3rd Party
 - Facility began to experience capital constraints due to the immense building project
 - Demand Response provider offered to own the backup generation system for small reliability adder on power contract
 - Demand Response provider retains revenues from operation of the system, and facility offloads capital requirements, risk, and operational responsibility of the generation system while still maintaining emergency standby capabilities

NESHAP Case Studies

Multiple Municipalities, NC

- Rule Change
 - Generation owners were made aware of NESHAP requirements in 2010, and would no longer be able to run their generation for peak shaving. The value of peak shaving was roughly \$120/kW annually.
 - Each generation owner evaluated the cost of a NESHAP retrofit (~\$50/kW), determining the immense value of peak shaving outweighed the short term capital cost.

New Demand Response Opportunities

- Countless facilities have existing generation onsite used for emergency standby only.
- Regardless of how small the Demand Response benefits, many customers have moved forward on retrofitting emissions on their engines to meet NESHAP requirements to enable Demand Response participation.

Summary

 By understanding the emissions and technical requirements for nonemergency generator operation (both existing engines and new installations), facilities can turn a traditional sunk cost into a long term investment.

Questions?

