

Confronting Murphy's Law: Dealing with Energy Price Uncertainty in your CHP Project

Presented by: Kinect Energy Group Thursday, February 23, 2017

▼ Energy History at U of MN – How did we get here?

Murphy's Law and Lessons Learned

Confronting Energy Price Uncertainty

University of Minnesota CHP plant

U of M Energy Management Requirements

Reliable

Ensure reliable energy supply

Sustainable

 \blacktriangleright Reduce CO₂ emissions

Cost-effective

Identify energy efficient opportunities and balance upfront investment costs with long-term savings potential

Utility Master Planning

• As of June 2009, the situation was clear:

- Steam capacity was inadequate
- Boilers were aging and beyond their useful life
- Competing with other higher education institutions
- Sustainability plans Zero Carbon by 2050
- The conclusion was to add two package boilers...

BUT

Another option, CHP, could save the University \$'s

Summary of Challenges

▼ Reliability

- Projected shortage of 'firm' steam capacity
- Risk to research, teaching and operations due to 100% of steam for Minneapolis campus coming from one site served from single tunnel away from campus

Sustainability

Commitment to provide energy with less carbon output

Cost Effectiveness

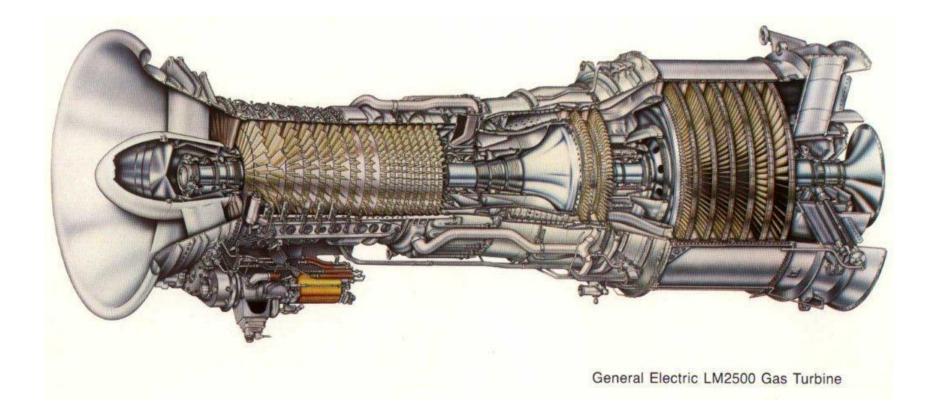
- Impact to utility rates after adding steam capacity
- Projected increases in utility electrical costs
- Needed site for next efficient chilled water plant

Sustainability Commitment

Carbon Footprint Reduction

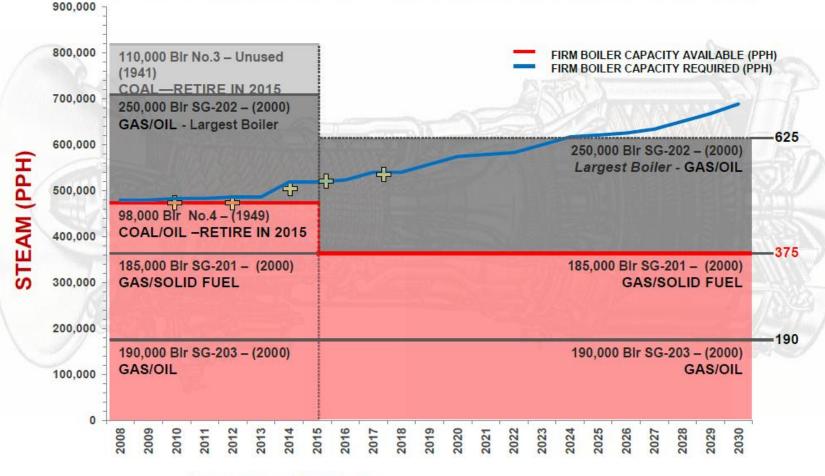
- > 10 to 13.5% of the Campus 2008 baseline
- > 81,000 metric tons of CO2
 - (Recalculated number from 65,000)

Equivalent to


- > 17,000 passenger vehicles in a typical year or
- 192,857,143 miles driven by the average car or...
 22.3 wind turbines

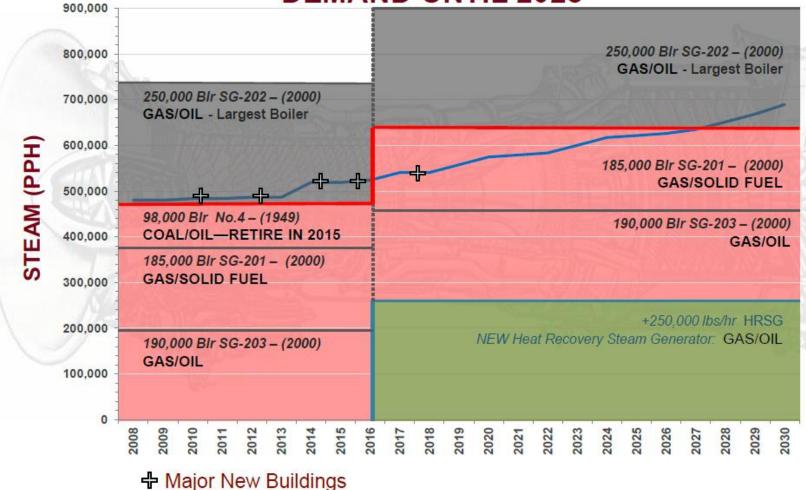
Source: epa.gov/cleanenergy/energy-resources/calculator

U of M's CHP Combustion Turbine



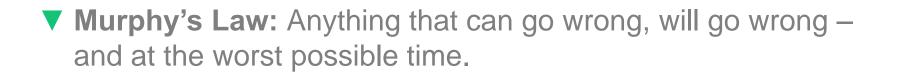
Sizing Driven by U of M Campus Steam Requirements

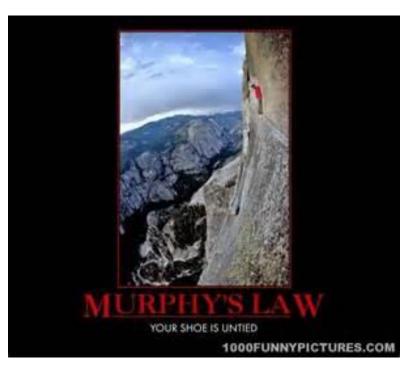
Steam Demand Exceeds Reliable Steam Capacity



Major New Buildings

U of M's Solution


PROPOSED BOILER CAPACITY MEETS PROJECTED DEMAND UNTIL 2028



Murphy's Law and Lessons Learned

 Corollary: If nothing has gone wrong, you have obviously overlooked something.

Everyday Life

- > Wash car, then it rains
- Get sick on vacation day

In Research

Experiment requires X number of parts; stockroom has X-1

In Electronics

An device protected by a fast acting fuse will blow to protect the fuse

Finance

Expenditures expand to fill the available budget

Car Repair

Any tool dropped under the car always rolls to the exact center of the vehicle

Ski Racing

Correct wax applied is perfect for conditions at race time...then conditions change

Lessons Learned

V Know Utility MW Tolerance window – load balancing

- Utility started at 1 MW tolerance; now increased to 5 MW
- Submit monthly electric nominations

Prepare to research and understand PURPA

- > 80 MW Federal rule; 50 MW MN state rule
- Need to know what to ask PUC don't expect full disclosure

Aggressively pursue all rebate incentives

Include Prescriptive and Custom financing programs -- \$2M rec'd

Balance Electric and Thermal needs to ensure waste heat is used

> This is critical to economic success of project

Lessons Learned

Understand legacy conditions at construction site!

Demolition needs, hazardous waste, asbestos, other issues

Read the fine print and ask questions on planned maintenance

- > 3 year major overhaul interval (offline 1 month)
- 6 month minor interval (offline 1 week)
- 2-4 week water washing interval (offline 1 hour)
- Plan on ongoing educational program
 - Staff will need training on CT handling and operation
- Get legal team involved early in process
 - Used 3rd party consultant without ties to local utility
 - Numerous opportunities to improve contracts
 - Example: interconnection liability insurance (negotiated to \$1M)

Lessons Learned

V Settle on best equipment configuration

- Planned for 2 turbines, ended up with single unit
- NPV of turbine is important
- Interconnection agreement commercial terms negotiable
- Who will own/maintain electric distribution system?

Will auxiliary equipment be required?

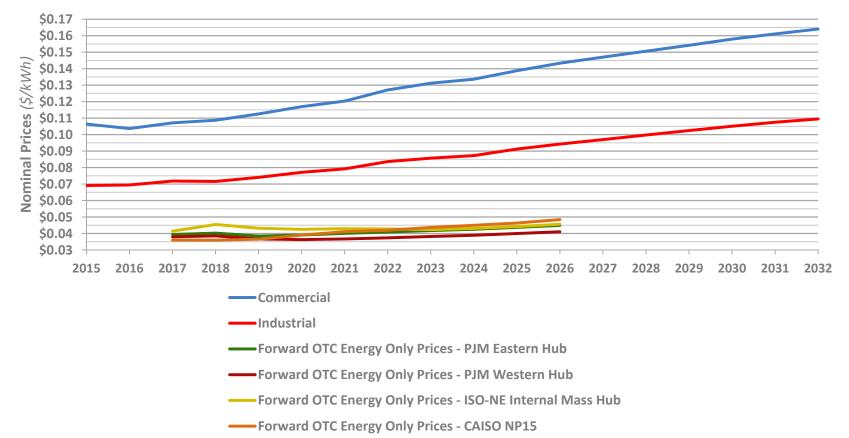
Example: Learned gas compressor required to meet spec

• Duel Fuel equipment planned?

- Necessary evil to avoid curtailment, but –
- Introduces more complexity and rate structures

Negotiate a long-term maintenance service agreement

Spend the time analyzing this, make sure it favors your needs


Confronting Energy Price Uncertainty

Electric Forward Price Curves

K

EIA Annual Energy Outlook *Price Projections - Reference Case*

Managing Natural Gas Input Cost

Provides financial hedge against utility electric costs

Defined gas hedging strategy

quantifiable targets + process for reassessment

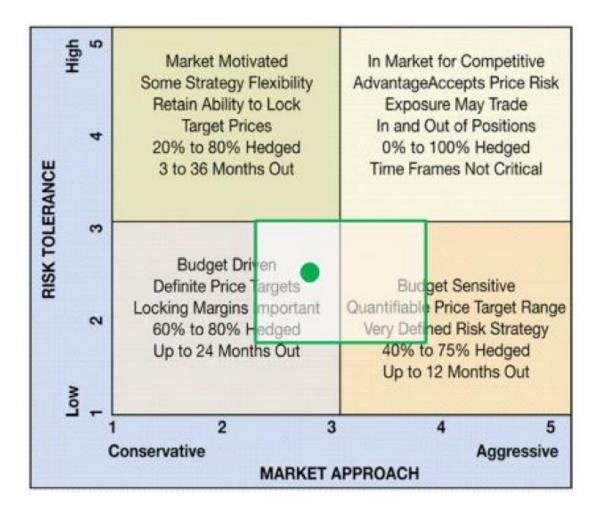
Defined execution strategy

defines the "who" and "how" of hedging

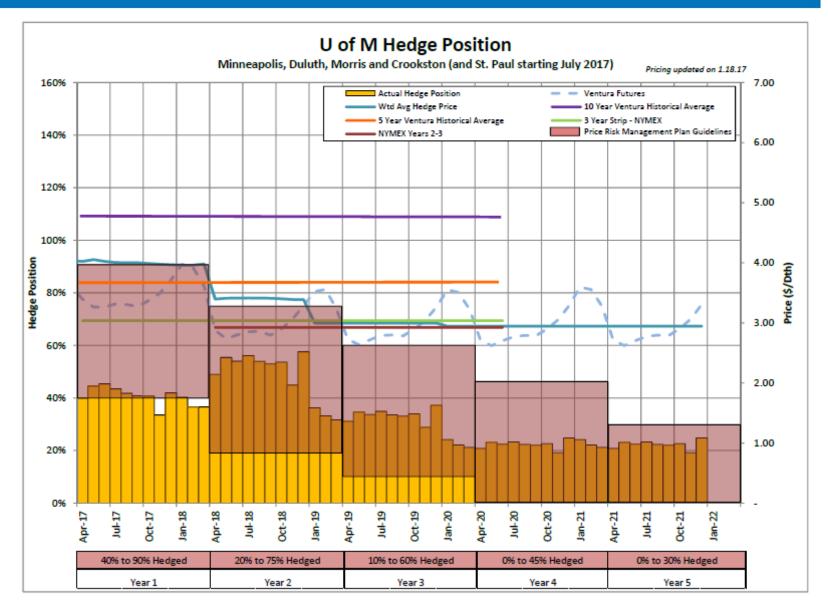
Budget oriented

> 40-75% hedged up to 36 months into future

- Insurance against volatility
 - component dedicated to budget predictability
- Defines timeframe windows for layering up to supply hedge targets
- Bounded view of the market: % around equilibrium
- Maintain flexibility and cost effectiveness



- Credit approved for multiple suppliers
 > (BP Energy, Shell Energy, UET, etc.)
- Typically \$.02~\$.10/MMBTU savings when suppliers compete for business
- Negotiated 25 year discounted gas transport rate with utility



- Purchases slide forward from prompt month
 > min/max targets
- **V** Purchase layers are *guides*, not absolutes
 - maintain flexibility to adjust
- Sliding purchase scale is synchronized to budget cycles
- Basis managed separately from NYMEX commodity pricing

University of Minnesota Hedge Position

We greatly appreciate your time and attention!

- Matt Haakenstad
 - Vice President, Advisory Services
 - Kinect Energy Group
 - mhaakenstad@kinectenergy.com
 - **763-543-4640**
- Bruce Hoffarber
 - Vice President, Market Development
 - Kinect Energy Group
 - <u>bhoffarber@kinectenergy.com</u>
 - 763-543-4625

KinectEnergy.com

Copyright © 2016 Kinect Energy Group. Proprietary & Confidential. All Rights Reserved.