

Presenters

Dave Yanni
Chief Development Officer,
GI Energy

Mike Walters

Principal & Campus

Energy Market Leader,

MEP Associates

Today's Topics

What is a Geo-District?

Technology Overview

Case Studies

...the Money

Questions?

What can a Geo-District deliver?

Energy Cost Savings Significant Carbon Reduction

Benefits

Characteristics of a Geo-District

Clean, reliable, renewable energy

- Uses constant temperature of the earth as a heat source in winter and heat sink in summer
- Able to supply some or all of a building's space heating and cooling needs
- Geo-Districts may incorporate one or more geothermal resources (open loop, closed loop, lake, or hybrid systems) to satisfy heating and cooling loads
- Geo-Districts may also move thermal energy between buildings, further improving efficiency

Image Credit: Ball State University

Case Studies

Epic Systems, Madison, WI

Ford Motor Company, Dearborn, MI

Cornell University Tech Campus, New York NY

Bay Area Eco-District, San Francisco, CA

Epic Systems – Healthcare Tech Campus

- Entire campus approximately 1,051 Acres
- 9,000+ employees in 27 buildings, with 12 more under construction
- Over 7 Million sq ft occupied space including 7,338 underground parking stalls
- 1.5 MW Solar PV
- 10 MW Wind Generation

Epic Systems – Eco-District Scope

Water-to-air & water-to-water heat pumps

Distributed Central Energy Plants

Geothermal bore fields and pond system

Open lake water system

Domestic water heating system utilizing geothermal water

Snow/ice melt systems

Photovoltaic solar panels

Wind farm

Epic Systems – Impacts

EPIC SYSTEMS – VERONA, WI

PHOTO CREDIT: KATIE WHEELER

Carleton College

Highly selective undergraduate college, 2,100 students and 250 staff on 1,040 acre campus.

With a focus on replacement and renovation, Carleton anticipates only 3% net growth in total campus square footage over the next 25 years.

Carleton College – Project Scope

Carleton College – Seasonal Load Profile

Carleton College – Impacts

Utility Cost (\$/yr)

Carbon Emissions (lb C02/yr)

Energy (MBtu/yr)

Ford Low Entropy Campus Transformation - R&E Center

Low Entropy Campus

Design Goals encompass building heating, cooling, and ventilation systems:

- 1. Provide comfortable, effective, well-connected work environments
- 2. Heat and cool with energy streams as close to room temperature as possible
- 3. Recycle energy streams effectively and introduces new ones judiciously
- 4. Minimize energy system distribution losses
- 5. Bank and retrieve energy flows over time

Led to

 Central heat pumps, chillers, cooling towers, geothermal heat exchange, thermal storage, cogeneration, and photovoltaics

Ford Campus Transformation – 2025 Master Plan

Ford Campus – Energy Infrastructure & Central Plant

Ford Campus – Impacts

Cornell University

- Ground Source Heat Pump technology for 150,000sq ft Bloomberg Center, the campus' first academic center
- 80 Bores 350 ft deep

- Modelled peak load on 265 tons of cooling
- Originally designed to support Bloomberg Center to be one of largest Net Zero buildings in USA

Cornell University

Design includes unique annulus pumping system to increase efficiency of each bore and utilize local geological features

- Highly fractured bedrock allows river water to infiltrate boreholes
- Pumping system circulates water around the loops to increase thermal dissipation

Hunters Point Shipyard, San Francisco Redevelopment & Eco-District

- 8,000,000+ square feet of new residential, commercial and R&D development
- New Master Utility Plan designed along with street grid and development blocks
- Third party funded systems: Solar PV & energy storage, geo-exchange HVAC, recycled water, automated waste collection, EV charging and selfsustaining street lights
- Mix of direct-use third party offtake contracts, and partnerships with local municipal utilities

Hunters Point Eco-District – Details

- ~450,000 GPD water recycling system
- 10-15MW of rooftop PV planned
- 2,200 bore,15,000 ton capacity geothermal heating & cooling system
- When fully completed, system will reduce energy usage by 60% and save 150,000,000 gallons of water annually

Financing – Third Parties

What	Capital Markets are chasing investment opportunities in renewable and sustainable energy
Who	Private equity, infrastructure funds, venture capital and institutional investors are all interested
Why	Mix of revenue types create diversified portfolio in single project
So	No longer as reliant on tax credits to unlock financing

Typical D-BOOM Structure

Public Private Partnerships (PPP)

- Tool to help pay for infrastructure that maintains competitive energy prices
- Third party finance + municipalities and local agencies (+ developer) = sustainability services to end users
- Limited public investment in infrastructure

Any questions?

Contact

Dave Yanni

- **(** (646) 831-0291
- dyanni@gienergyus.com
- **y**@gienergyus

Mike Walters

- **(**608) 225-8608