Seven Penn Plaza, 370 Seventh Avenue Suite 701
New York, NY 10001
Phone (646) 827-6400, Fax (646) 827-6401
www.wmgroupeng.com

An Alternative Approach to Chilled Water Optimization:

Operator Advisory and On-going Training

A 10,000 ton Central Chilled Water Plant Case Study

BY: Brent Dunham, MS

Chilled Water Optimization...The Alternative

- There are many advanced platforms and controls systems that allow for Optimization of Chilled Water Systems
- These are great systems but can be very costly and may not fit into near term budgets.
- What can you do now to help reduce energy and lower your carbon footprint!

It starts at the center of all systems...

We will focus on one half- Chilled Water

Let's look at each component

Chillers-Decision Making

- Know each machine
- Understanding Sweet spots

- Need to decide when to start/stop chillers
- Need to decide CHW setpoint

Cooling Towers-Decision Making

- Understanding balance of Fan Energy, Pump Energy, and Chiller Energy
- Need to decide how many cells to run
- Need to decide Condenser Water Flow/ # of pumps
- Need to decide CW Temperature set point

CHW Pumps-Decision Making

- Understanding Pump
 Efficiencies
- Pumping System Type
- Need to decide when to start/stop pumps
- Need to decide what
 Speed set point

Valves-Decision Making

- Valves in the distribution can be the death of a system.
- Understanding to only use when absolutely required.

Building AHU's – Decision Making

2 Reasons for Cooling:

- 1. Dehumidify (most important)
- 2. Maintain space temperature
- Willis Carrier- "The father of air conditioning"
 - "The principal function of air conditioning is the control of moisture"
- Need to decide cooling valve set point

Seems easy right?!? What can you do? Where to Start?

- Operator Advisory
- On-going Training

Operators Culture?

- Operators have their own way on how to operate plant
- Quite often the same plant is operated differently by each shift operators.
- The goal for the operators is to avoid telephone calls
- Optimizing the operation takes back seat
- First we need to work with operators to build their confidence ant trust

How to empower operators and change their culture?

- First we need to work with operators to build their confidence ant trust
- Repeated demonstration of energy savings and teaching with respect is a must.
- Rewards are tremendous
- After a while you feel great about making a change and empowering operators

Step 1: Baseline Your System

 Understand where you are at and where you can go- to set goals

 Plant kW/ton is a great measure to use, and kW readings are relatively easy to capture.

Take some snapshots off the energy meters

and/or amp readings.

kW/Ton

1.2

1.1

1

0.9

0.8

0.7

0.6

0.5

Step 2: Develop Decision Making Process

- Determine all factors that drive the decision making process, What works for YOU!
- Identify all controllable components
- Data and Surveying
- Understand energy impacts of each component
- Red flags for equipment operation, poor efficiency
- Develop Sequencing for Operators
- Operators always like easily understandable, useful tools for guidance and reference

Step 3: Working in the Operator Room

- Work with operators and change operations with their help.
- Traditions take time to overcome
- Discuss and educate operators in *layman* language to build his/her confidence.

Step 3: Working in the Operator Room

- Operators must be trained by showing them.
- Remove fear from operators.
- Show them the results.

Smart solutions that work.

Step 4: Continue to Train and Advise

- On-going Training is a must.
 - One and done will set you up for failure.
- Develop annual training plan for a weekly, monthly, yearly basis.
- Update Tools as the system is updated.

 When Optimization is added, the operators will have a much better foundation, and you will see enhanced acceptance.

Experience and Case Studies

A 10,000 ton CHW Plant Case Study

- Unique Project
- Client wanted to ensure that operators were well trained, and knowledge was sustained for long term
- Engaged in a year long Operational Oversight
 - Daily Review of System Operation-interact with operators
 - Cheat Sheet for System Operations based on Big Data Analytics
 - On site monthly/weekly for additional training and review
- Immediate Project Payback

Existing Plant

Day One

Example Chiller Plant:

Average Energy Rate:

Average Generation Rate:

Cost Per Hour:

Equivalent Annual Rate: \$2,054,800/yr.

10,000 Ton system

0.778 kW/ton

\$0.12/kWh

\$934/hr.

First Operating Training

Day Two

Example Chiller Plant: 10,000 Ton system

Average Energy Rate: 0.668 kW/ton

Average Generation Rate: \$0.12/kWh

Cost Per Hour: \$801/hr.

Equivalent Annual Rate:

\$1,763,520/yr.

Savings: \$291,280/yr.

14% Reduction in one day!

No Capital Investment cost!

Payback in Months

Chiller Average kW/Ton

Cooling Towers - Before

Cooling Towers - After

Reduction in Tower Temp reduces chiller energy

Before

After

Average Line Current	61.2 %	
Actual Line Current Average Line Voltage Actual Line Voltage Power Factor	132.2 AMPS 97.7 % 4065.2 Volts 0.897	
Motor Kilowatts Motor Kilowatt-Hours Demand Kilowatts Line Current Phase 1 Line Current Phase 2	845.8 kW 33880.6 kWH 824.0 kW 131 AMPS 138 AMPS	JD York

Minimum flow bypass valve

- Minimum flow bypass valve would always stay wide open due to set point.
- WM Group evaluated chiller requirements and identified set point was 400% of what it should have been
- Just by changing the set point the valve closed and remained closed during all operations, even winter

Actual Savings:

- 15\$/hr
- Estimated Potential: \$130,000

AHU in Buildings can greatly impact the system

Poor delta T in shoulder season, due to poor control

Fouling and Heat Transfer

- Tube and plate fouling causes high approach temperatures.
- Rule of thumb, every degree above the design short temperature is an increase in power by 1.5%

Valves – Be on the look out

- A partly Closed valve represents an energy loss – The valve pictured left represented a 50HP loss.
- Pictured below, taps left open.

Case Study Summary

- Great Relationships established with Operators
- Contract was extended with great success
- Identified ECM's with potential of \$400,000/yr savings
- No Capital Funds
- Quick Payback
- Future projects were realized and documented by having our engineering team onsite

Summary: How to get your system in shape

- 1. Bridge of Time Change culture and habits
- 2. Provide ongoing System training to operators
- 3. Confidence to make changes in controls
- 4. Ongoing Data Analytics to find deficiencies
- Measure, Verify, and *Maintain* system improvements

WM Approach to Optimizing System

- Train your operators
 - Make it a requirement
 - Educate operators on system optimization
 - Change of habits
- A difference in Manpower
 - People who think beyond equipment level
 - Can visualize system as a whole
 - Engineering oversight

An ECM you can't turn down....Operator Training.

Thank You

WMGroup

Brent Dunham, bdunham@wmgroupeng.com
Hemant Mehta, hmehta@wmgroupeng.com

Seven Penn Plaza, 370 Seventh Avenue Suite 701

New York, NY 10001

Phone (646) 827-6400, Fax (646) 827-6401

www.wmgroupeng.com

