End to End Chilled Water Optimization Merck West Point, PA Site

Michael Nyhan, PE – Associate Director at Merck
Travis Smith, PE – Principal at Smith Engineering
Dan Shirley – Utilities Engineer at Thermo Systems

Site Background

- 500 Acre Mixed Use Manufacturing, Research, and Administration Site
 - 60+ buildings ranging in age from 1950s to 2000s
 - 6.1MM sq ft under roof
- Over 62,000 tons of installed chilled water capacity
 - 7 Plants 43 chillers 209 pieces of equipment
 - ~ 50/50 steam turbine and electric chillers
 - > 25 miles of distribution piping
- Unique cooling demands as a result of research and manufacturing
 - Significant variations in cooling demand from summer to winter

Systemic Chilled Water Challenges

Supply

- No Centralized Supply
- Control Schemes
- Cogen Constraints
- Zero Downtime

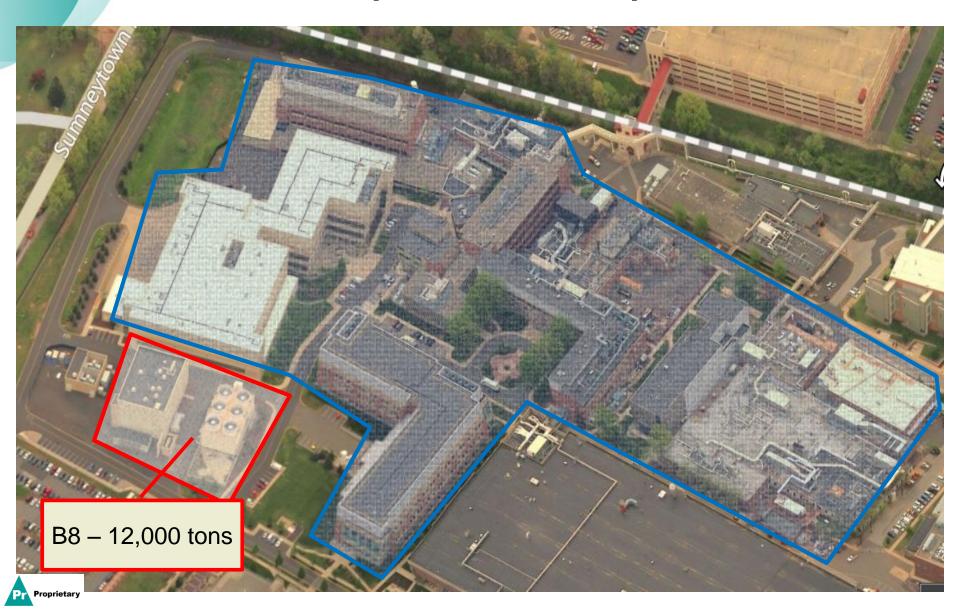
People

- Lack of understanding
- Disconnect between supply and demand

Demand

- Low dT / high dP
- Complex distribution
- Bypasses
- Simultaneous heating and cooling
- Load variations

End to End Optimization Goals


- Focused "end to end" optimization of chilled water to maximize the existing plant assets and improve building performance
 - Ensure reliable supply and efficient operation
 - Utilize our existing assets smarter = eliminate waste
 - Drive down utility cost and the need for additional capital assets
 - More Available Assets = Master plan flexibility
- Establish a process as a template for the next zone of the chilled water network optimization

End to End Optimization Scope

End to End Optimization - Approach

Supply

- Focus on B8 plant that serves a pilot plant, multiple research and administration buildings
 - 12,000 tons 1 electric, 5 steam turbine chillers

People

 Focus on training and awareness of chilled water system

Demand

 Focus on resolving issues in the piping system and within the user buildings by a variety of methods

End to End Optimization – Key Activities

Supply

- B8 Chiller Plant Optimization Capital Project
- Termis Solution

People

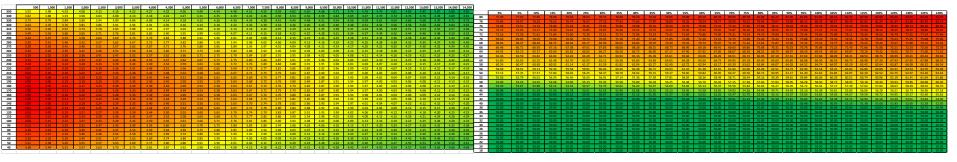
- Pilot Plant Utility Alliance
- Training of Building Managers and Mechanics
- Education for Design Engineers

Demand

- Metering HMI
- BAS Interrogation
- Brute Force Walkdowns

Supply – Optimizing CHW Generation

- Plants use four fuel sources
 - Cogen Electric
 - Cogen Steam
 - Grid Electric
 - Boiler Steam
- Systems with multiple fuel sources but be optimized on common energy units or more preferably \$.
 - All upstream system efficiencies and pricing must be understood



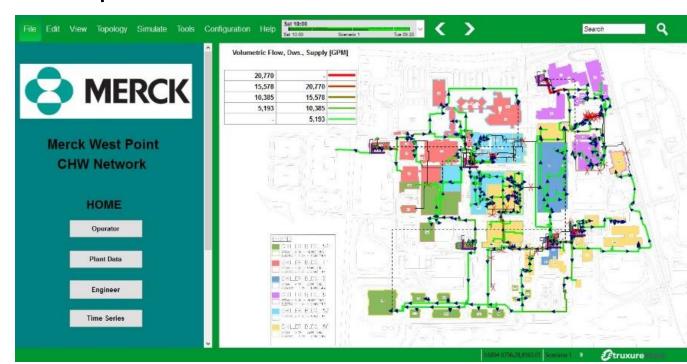
Supply – Optimizing CHW Generation

- All optimization is non-proprietary.
- Multivariable equations with adjustable coefficients
 - Number of Pumps
 - Equation Constants
 - A: 3.60746000000
 - B: 0.00014121000
 - C: -0.00856000000
 - D: -0.0000000297
 - E: 0.00002655000
 - F: -0.0000007695

- CWST

- Equation Constants
 - A: 15
 - B: 4.5
 - C: 0.78

 Data from PI is run through machine learning and constants can be updated as frequently as desired



Supply – Optimizing CHW Distribution

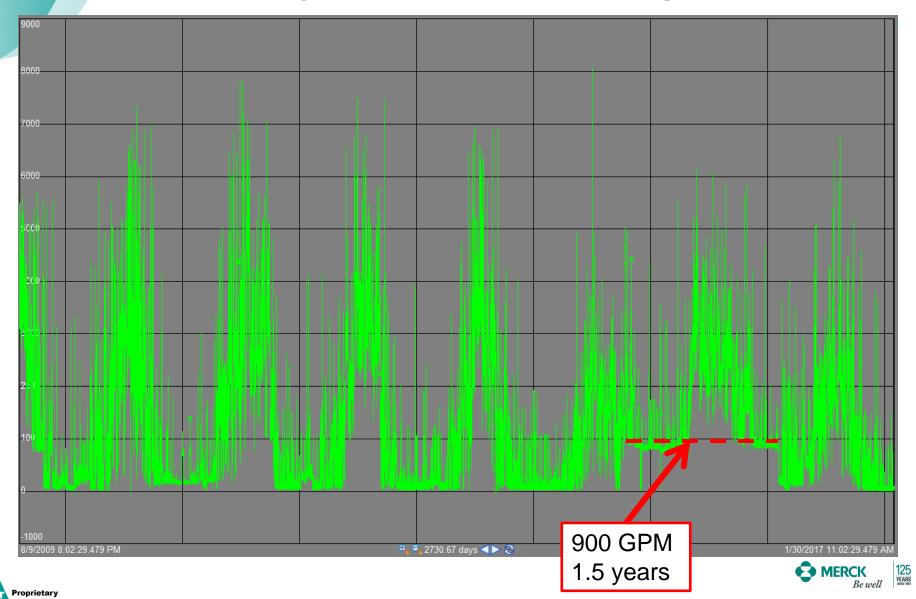
Distribution Optimization with Termis

- Macro Distribution Decisions and Planning
- Potential Elimination of Chiller Plant B52
- Interconnection of all plants
- Plant Dispatch

Demand – Optimizing Customer Usage

- Policing our utility customers
 - Equipment overrun caused by low delta T
 - High flow + Low load = Poor COP
 - Isolate unloaded CHW flow
 - 3-way valves, bypasses, OOS equipment
- Big data at our disposal
 - 450 CHW instruments
 - >4,000 calculated tags
 - Tonnage, dT, dP, totalization, cost
 - Need a filter to help locate problems only
- Creation of a new HMI

Demand – Data Driven Investigations


B16 F: 592.7

F: 55.0 GPM ST: 44.6 DEG F

- Processbook HMI
 - Holistic view of entire CHW network
 - Visually focused on problems
 - dT, dP, failed devices, unusual loading
- Building Automation System (BAS)
 - CHW control systems within a building
 - Focused on HVAC and process operation
- Brute Force Walkdowns
 - "Health" of a building's CHW system
 - Leaking pneumatics, manual bypasses, clogged strainers

Case Study: B14 Low dT Investigation

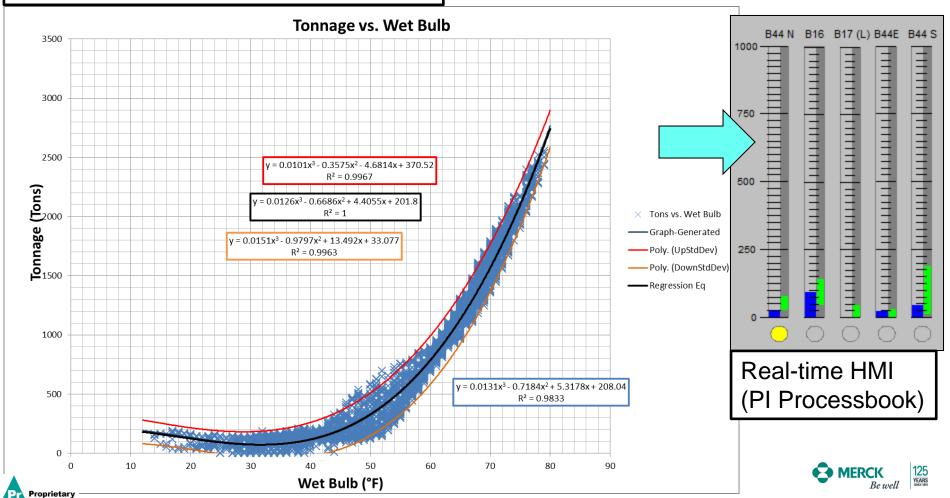
Case Study: B14 Low dT Investigation

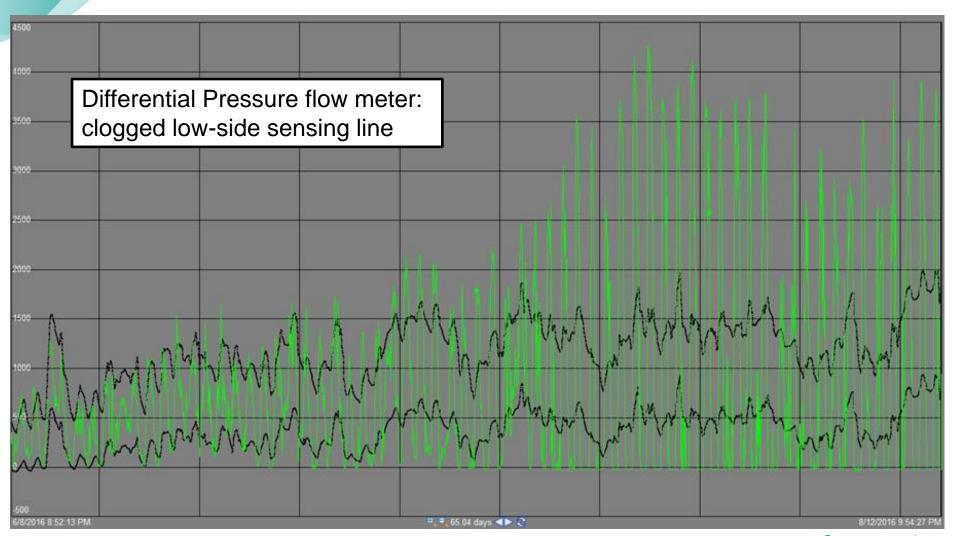
- Chilled Water ΔT
 - ΔT is the temperature difference between supply and return water flowing through a building
 - This temperature is a very good indicator for malfunctioning valves that are not maintaining adequate flow
 - Typically this temperature is ~10°F by design throughout the year
 - B14's average ΔT was about 4°F!
- The Culprit: AHU 7
 - February 2016 AHU 7 was found to be off with its CHW control valve wide open due to a design flaw
 - This valve was allowing roughly 800 GPM through the AHU for 1.5 years or about 600,000,000 gallons

Demand – The Metering Problem

- Building load regressions
 - How has the building behaved in the past?
 - Dependency on weather conditions
- Error detection equation

$$PI \exp = \frac{(0.01681 * WB^3 - 1.59587 * WB^2 + 47.20835 * WB - 451.85376) - (B14 tonnage)}{(0.003 * WB^3 - 0.51214 * WB^2 + 18.4556 * WB - 291.935)} + 10$$


- Derived from PI historian data using PI Datalink
 - Custom built report automatically creates PI expressions
- Detects unusual load conditions based on OA wet bulb temp
- Translation to HMI
 - Must be illustrated graphically to have use
 - Gives user clear indication of need to act



Demand – Creating Active Regressions

Building tonnage behavior (PI Datalink)

Demand – Error Detection in Action

People

- Pilot Plant Utility Alliance
 - Identified as the largest consumer of chilled water (among other utilities)
 - Cross functional team established with strong building leadership to improve efficiency
- Training of Demand Side Owners and Mechanics
 - Supply side driven effort to train the building managers and their mechanics as to the impact of inefficient use of chilled water
- Education For Design Engineers
 - Central utilities involved in early design decisions
 - Established a notification process for using CHW

End to End Optimization – Results Summary

B08 Optimization Results (Pre Machine Learning)

•	Pre-Optimization		Post Optimization		
	7/1/2013	7/1/2016	7/5/2016	11/15/2016	
Steam Chiller Average lb/Ton		11.10		9.40	lb/Ton
Elec Chiller Average kW/Ton		0.76		0.63	kW/Ton
CHW Pump Average kW/Ton	0.114		0.057		kW/Ton
CW Pump Average kW/Ton	0.174		0.128		kW/Ton
CT Fan Average kW/Ton		0.068		0.054	kW/Ton

Savings			
15%	%		
17%	%		
50%	%		
26%	%		
20%	%		

Lessons Learned

GENERAL

- No silver bullet solution customizable approach for each situation
 - Complex relationships between supply and demand exist

SUPPLY

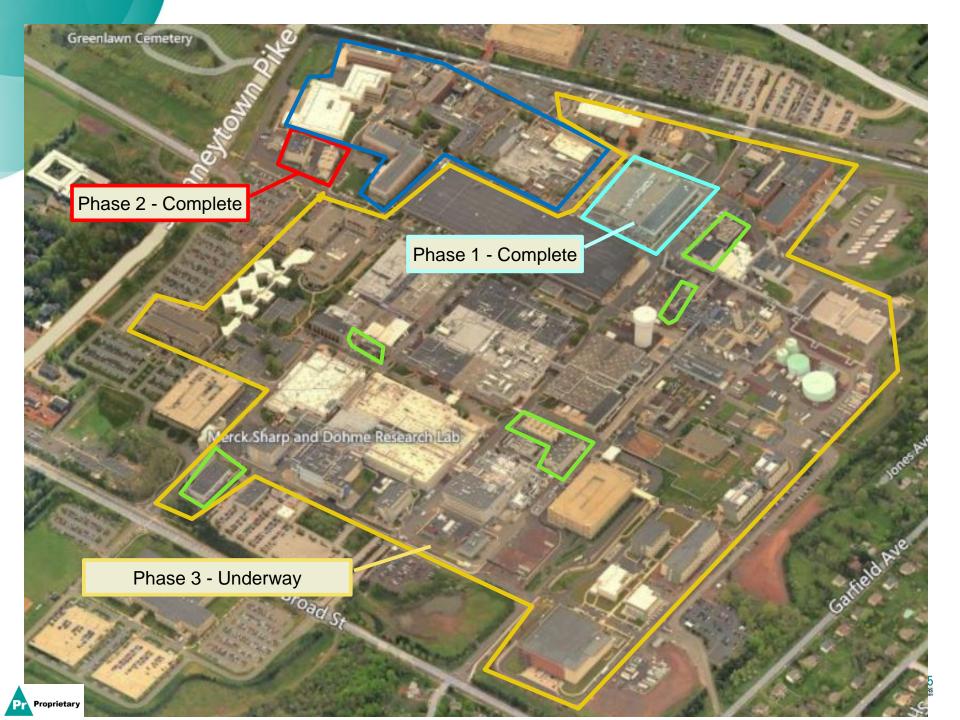
- Chiller plant optimization without demand side optimization is short sighted
 - Machine learning and network distribution optimization is the current focus

DEMAND

- Metering is key!
 - Need to have eyes on the system at all time
 - Being able to quantify low delta T and converting it a meaningful metric
- Fresh eyes are needed for field walkdowns

PEOPLE

- Training and re-training is key
 - Speak demand side language (criticality, risk, compliance)



Next Steps

- SUPPLY
 - Future Optimization
 - Optimizing the balance of the plant CHW systems over the next 3 years
 - Termis calibration and utilization for operational improvements and site master planning
- DEMAND
 - Metering
 - Significant investment in metering of buildings
- PEOPLE
 - Continuing to promote connection between chilled water optimization and overall system reliability
 - Speaking production and research language

Thank You / Questions?

