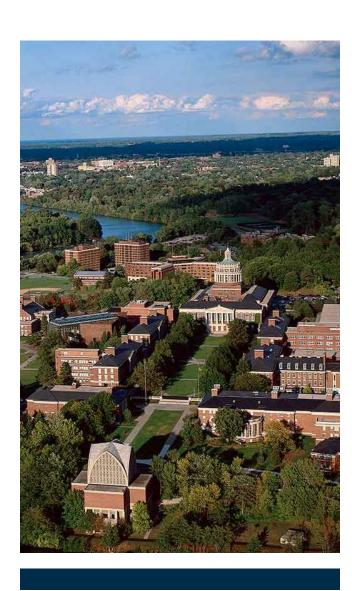
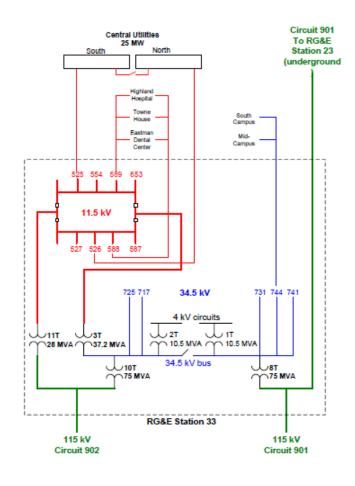


Agenda



- Introduction to University of Rochester
- Electrical System Highlights
- Overall Electrical System Study
- Main Substation Project
- Completed System Upgrades
- Current/Future Projects
- Project Financial Summary

The University of Rochester

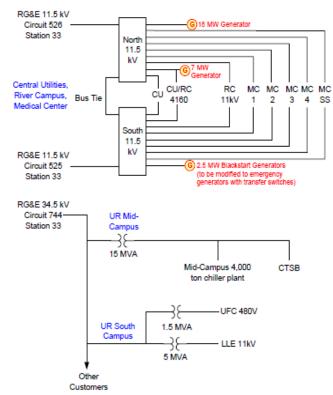


- Founded in 1854, Private University
 - Central Heating Plant -1924
 - Medical Center 1926
 - River Campus 1930
- 158 Buildings, over 12MM gross SF building space
- 10,500 students (graduate and undergraduate)
- 800 bed hospital, regional trauma center
- Central chilled water system 2 chiller plants (32,000 tons)
 - Mid-campus plant (12,000 tons 2008/2014)
- Five steam boilers (498,000 lbs/hr)
- Steam & medium temperature hot water distribution systems
- 25MW Steam Turbine Generation (2 units 2005)
- \$54MM annual utilities budget

Electrical System Highlights

- Utility Supply Connections
 - CHP/River Campus/Medical Center @ 11.5 kV (RG&E Stn 33)
 - Mid-campus/South Campus @ 34.5kV (RG&E Stn 33)
- Capacity vs. Demand
 - Total Electrical Load (2010) = 37.5 MVA
 - Projected Future Load (2030) = 71 MVA
- Concerns with Existing Utility Supplies
 - No additional capacity available/no plans for supply growth
 - Reliability issues
 - Stn 33 equipment failures
 - Equipment age end of life

Electrical System Highlights


- Campus Divided into 4 Main Geographic Areas:
 - River Campus
 - CHP/Medical Center
 - Mid-Campus
 - South Campus
- 2010 Load Breakdown
 - River Campus 7.5 MVA/12 MVA future
 - CHP/MC 20 MVA
 - Mid-campus 4 MVA/25 MVA future
 - South Campus 4 MVA/14 MVA future

Electrical System Highlights

Existing Electric Distribution

- 11.5kV and 4.16kV distribution levels
- Central Utilities (CU) 11.5kV substation main connection to utility
- Dual radial feed from CU 11.5kV sub to distribution substations
 - River Campus, Medical Center, CHP
- Loop feeder system from distribution substations to building loads
- 18MW (11.5kV) & 7MW (4.16kV) steam turbine generators
- 34.5 kV radial supplies to MCCP & South Campus

Overall Electrical System Study

- Started in 2010/Completed in 2012
- On-site review of existing equipment, ratings, trip settings & condition
- Created electronic model of electrical distribution system (EasyPower)
- Analysis completed using modeling software
 - Short Circuit/Arc Flash/Protection Coordination
 - Load Flow
- Evaluate potential locations for new university substation & distribution configuration

Study Results/Recommendations

- Replace existing electromechanical relays with microprocessor based electronic relays.
- Located over-dutied equipment.
- Identified documentation deficiencies Single line Diagrams & Operating Diagrams.
- Recommended relay setting and fuse sizing changes to enhance coordination and reduce arc flash levels.
- Identified preferred utility substation location & distribution configuration.
- Recommended implementation of system wide SCADA system to improve monitoring/control/troubleshooting.

Study Results/Recommendations

Three potential locations for new 115 kV Substation:

	Stn33/CHP	Mid-campus	South Campus
Pro's	 Close to existing 115 kV ROW Close to majority of existing load 	CentralizedClose to future load growth	 Close to existing 115 kV ROW Close to future load growth Not congested/no impact to campus plan
Con's	 Very congested area Premium real estate CHP expansion RG&E resistance 	 Need extension of 115 kV Premium real estate Chiller Plant expansion/Thermal storage 	 Further away from majority of current load

The South Campus location was selected.

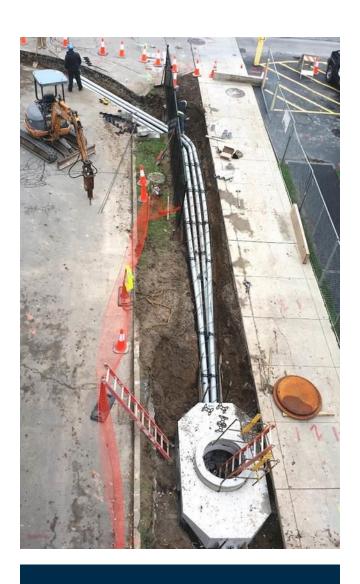
New Main Substation Project

- New 115 kV utility switchyard (by RG&E)
- 2 x 100% transformer & switchgear arrangement
- 75MVA capacity
- Automatic transfer capability
- HMI for remote monitoring and breaker control
- Phase I: Mid-campus & South Campus loads
- MCCP substation expansion
- Ductbank capacity for Phase 2 extension (CHP/RC/MC)
- Construction start late 2013/on-line March 2015 (~15 MVA load)

New Main Substation Project

New Main Substation Project

Multiple Infrastructure Upgrade Projects



- Upgrade protection relays to electronic microprocessor based relays in existing 11.5kV switchgear
- Replace existing 4.16kV switchgear at end of service life with new switchgear
- Implement relay setting changes and replace fused switches with breakers as necessary for manageable arc flash levels
- Automatic transfer capability at 11.5kV and 4.16kV switchgear

Current/Future Projects

- Main Substation Phase II
 - Transfer remaining campus electrical loads to the new substation with new feeders
 - Includes River Campus, Medical Center and CHP
- 4.16kV Re-cabling Project (River Campus)
 - Replace aging cable with new feeder cables
 - Maximum utilization of existing infrastructure
 - New ductbanks as required for route diversity
 - Provide additional feeder loop to relieve heavy loading on existing feeders and projected future buildings

Project Financial Summary

Completed/Current Projects

- Main Substation/MCCP expansion/South sub repl. \$23 M
- 11.5 kV CU Swgr relay replacement -\$121 K (construction)
- 11.5 kV MCCP Swgr relay replacement -\$179 K (construction)
- 5 kV RC swgr replacement \$1.5 M
- CHP Xfmr primary switch replacement -\$134 K

Future Projects

- RC 5 kV Distribution/Recabling -\$6 M over 6 years
- Main Substation Phase 2 Load connection for CHP/MC -\$11.9 M

