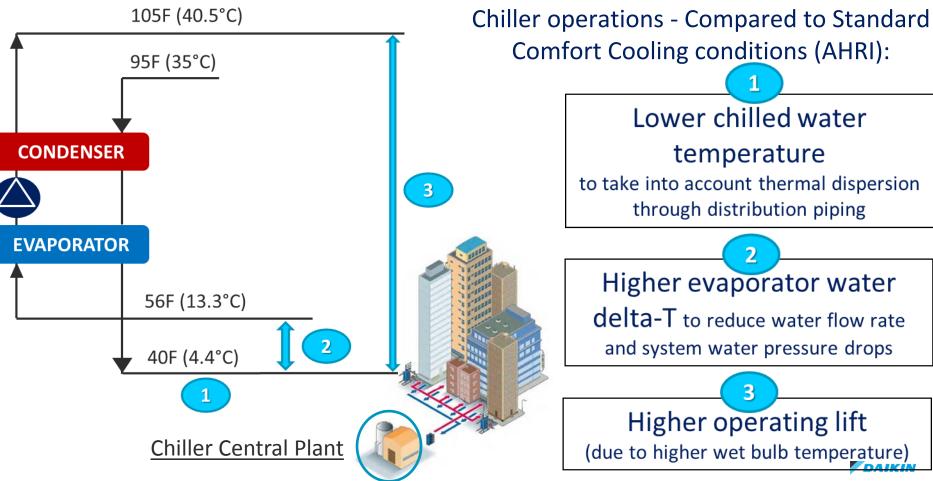


DEVELOPMENT OF PREMIUM EFFICIENCY CENTRIFUGAL COMPRESSOR FOR MIDDLE EAST DISTRICT COOLING APPLICATIONS

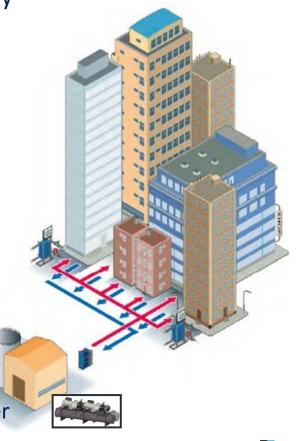

International District Cooling Conference Dubai, 15th of November 2016

Mr Luca Paolella Daikin Applied Europe V.P. CEO, Engineering & Manufacturing Director

Background

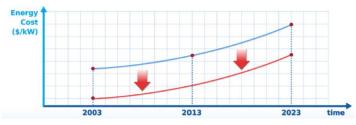
MIDDLE EAST **TYPICAL** DISTRICT COOLING CONDITIONS

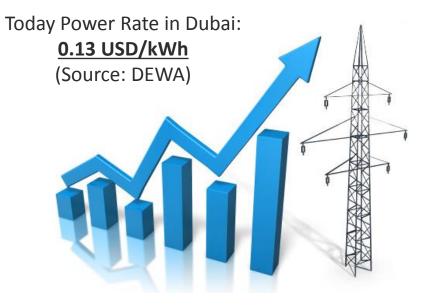
MIDDLE EAST TYPICAL DISTRICT COOLING CONDITIONS District Cooling plants require also chillers the ability to operate at below typical **adverse conditions**:


5

Low delta-T syndrome

- Forces more chillers to operate at part loads;
- Increase in Opex for DC provider since plant efficiency is reduced;
- Impedes full utilization of plant installed capacity.


Higher Entering cooling water temperature vs design


- In case of failure of a Cooling Tower, the header temperature of water leaving the tower will rise affecting all the chillers;
- During summer, make-up water from utility provider can be as high as 113F / 45degC

GLOBAL ENERGY MARKET

The **electric energy market price** has been growing in the last years even in the Middle East region and such a **growth** is expected to continue in the next coming years.

District Cooling investments must look at future energy cost as well. As energy demands and costs rise, District Cooling plants for offices, industry and homes need to be **increasingly efficient, reliable and sustainable**

ENVIRONMENT

Most of human activities are based on the use of equipment which impacts the Earth's ecosystem through direct/indirect CO2emissions.

Demand for natural resources must not overcome the Earth's capability to regenerate.

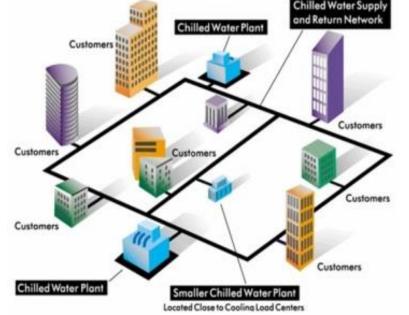
The equipment (incl. HVAC systems) must generate the lowest possible carbon footprint, meaning the lowest amount of CO2 emissions.

CO₂ Several regulations are introducing mandatory and stringent requirements on the Energy-Related-Products' design in order to achieve challenging global targets of CO2 reduction in the next decades, as per the agreements from Global Climate Conferences

- Latest MOP28 Kigali (Ruanda), October 2016 -

District Cooling

case studies


- Masdar City is a Zero-Carbon City under construction in the Emirate of Abu Dhabi (UAE)
- City concept based on renewable energy, environmental sustainability, clean technology and high energy efficiency.

<u>Client</u>: Masdar <u>Consultant</u>: Domiko <u>Contractor</u>: ADC Energy Systems

This project is based on a concept of distributed district cooling.

Full load and part load efficiencies have been optimized, by also taking benefit from the ability of the chiller to operate at Variable Primary Flow.

Project Phase I

2 WCT chillers arranged in series counterflow:

- Cooling capacity: 6000Tons @ Zero Tolerance
- Evaporator water: 60.6F / 44.6F
- Condenser water: 93F / 107F
- <u>Efficiency</u>: 0.575kW/TR @ Zero Tolerance

Chillers have been tested at Factory Test Facility in presence of the Client, at full and part loads with variable primary flow.

Test Results

PERFORMANCE TESTS								
Test conditions		Design		Measured		Measured Vs Design		
% Load	% Evap Water Flow rate	Capacity (TR)	Efficiency (kW/TR)	Capacity (TR)	Efficiency (kW/TR)	Capacity	kW/TR	
100	100	6000	0,575	6127	0,570	+ 2,1%	- 1,0%	
75	75	4500	0,569	4546	0,564	+ 0,8%	- 0,9%	
50	50	3000	0,662	3016	0,628	+ 0,0%	- 5,1%	
30	30	1800	0,646	1966	0,607	+ 2,8%	- 6,1%	

Test conditions				
% Load	% Evap Water Flow rate	% Cond Water Flow rate	Result	Test has fully met
50	50	60	Stable operation for 30 minutes	the commitment
50	60	60	Stable operation for 30 minutes	
50	80	60	Stable operation for 30 minutes	
11				

RUNNING COSTS

Power rate: 0.13USD/kWh

0.575kW/TR Daikin Vs 0.650kW/TR typical premium efficiency

300,000 USD yearly saving

CARBON FOOTPRINT

1200tons of CO2 emissions yearly saved, that would need 2,400 trees planted every year to be compensated.

AL HAMRA VILLAGE (Ras Al Khaimah-UAE)

1,500Km of pristine beaches, over 1,000 villas and townhouses, nearly 2,500 residential apartments, five hotels, an 18-hole golf course, a marina and a shopping mall.

Project phase IV - 2 parallel WCT chillers/<u>Technical Data:</u>

- Cooling capacity: 2 x 2783Tons @ Zero Tolerance
- Evaporator water: 56F / 40F
- Condenser water: 94F / 102.5F
- Efficiency: 0.624kW/TR @ Zero Tolerance

<u>Client</u>: Al Hamra Real Estate Development <u>Consultant</u>: DC Pro Engineering <u>Contractor</u>: Turner & Miller International

PERFORMANCE TESTS (Condenser relief)								
Test conditions		Design		Measured		Measured Vs Design		
% Load	% Evap Water	• •	Efficiency	Capacity	Efficiency	Capacity	kW/TR	
	Flow rate	(TR)	(kW/TR)	(TR)	(kW/TR)			
100	100	2783,0	0,624	2847,7	0,618	+ 2,3%	- 1,0%	
75	100	2087,3	0,620	2122,9	0,557	+ 1,7%	- 10,2%	
50	100	1391,5	0,445	1400,8	0,418	+ 0,7%	- 6,1%	
25	100	695,8	0,662	721,4	0,570	+ 3,7%	- 13,9%	

Stadium in Qatar

9 SCF pairs of WCT chillers /<u>Technical Data at full load:</u>

- Cooling capacity: 9 x 5800Tons @ Zero Tolerance
- Evaporator water: 57F / 41F
- Condenser water: 95F / 109F
- <u>Efficiency</u>: 0.633kW/TR @ Zero Tolerance

PERFORMANCE TESTS (Constant CEWT)								
Test conditions		Design		Measured		Measured Vs Design		
% Load	% Evap Water Flow rate	Capacity (TR)	Efficiency (kW/TR)	Capacity (TR)	Efficiency (kW/TR)	Capacity	kW/TR	
100	100	5800,0	0,633	5902,3	0,632	+ 1,8%	0,0%	
75	100	4350,0	0,696	4362,5	0,673	+ 0,3%	- 3,3%	
50	100	2900,0	0,726	2928,2	0,683	+ 1,0%	- 5,9%	
22	100	1276,0	0,636	1295	0,627	+ 1,5%	- 1,4%	

New 3000TR

Centrifugal Compressor

NEW CENTRIFUGAL COMPRESSOR

New 3000TR Centrifugal Compressor specifically designed for District Cooling applications

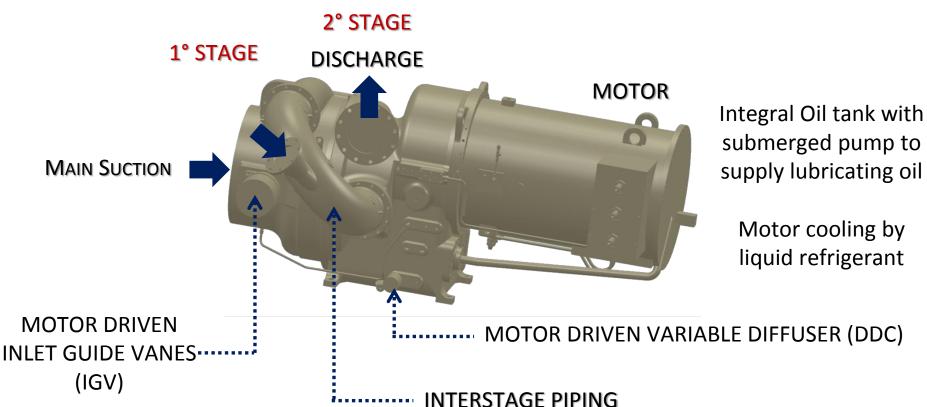
SUITABILITY TO APPLICATION

Capability to provide reliable and stable operations at required District Cooling operating conditions

HIGH ENERGY EFFICIENCY

Chiller COP: 0.63kW/TR @ Zero Tolerance

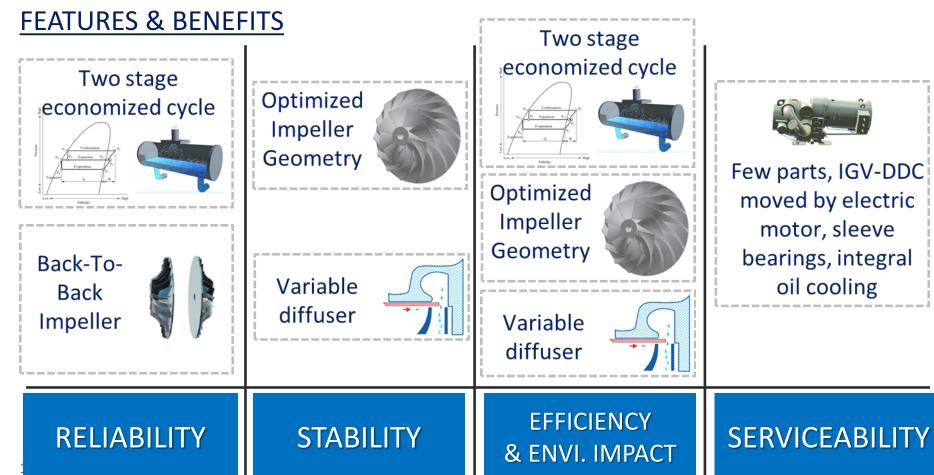
Lower running costs Fast return of investment

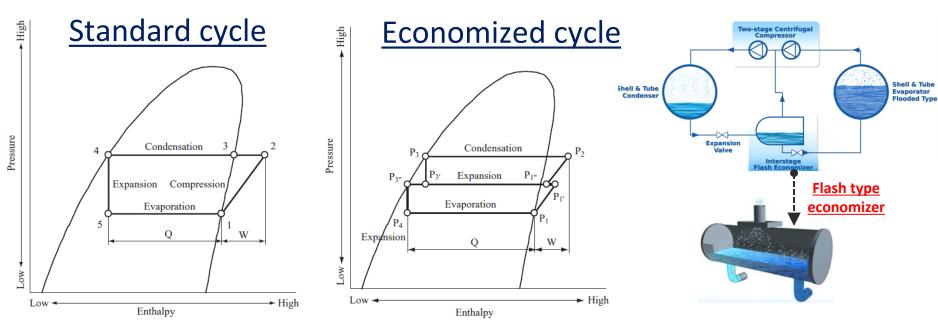

Sustainability:

Overall low carbon footprint

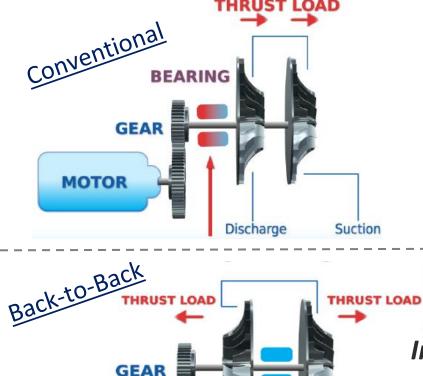
«...from cradle to grave» 🛛

NEW CENTRIFUGAL COMPRESSOR


OVERVIEW


Motor cooling by liquid refrigerant

NEW CENTRIFUGAL COMPRESSOR


Compressor Design features

TWO-STAGE ECONOMIZED CYCLE

- Under high lift conditions the economizer allows higher cooling capacity (up to + 10%) and efficiency
- Also better reliability and compressor durability thanks to reduced
 20 mechanical stress, as the lift is distributed on two impellers.

BACK-TO-BACK IMPELLER

REARING

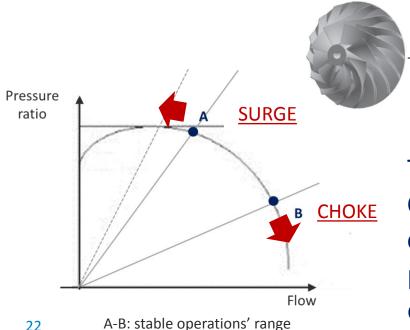
Suction

Discharge

MOTOR

Impellers are mounted on same rotating shaft and **oriented to same direction**. The resulting axial load is supported by a thrust bearing.

High bearing stress


Impellersareorientedtooppositedirections.Thrust load reductionby 67%

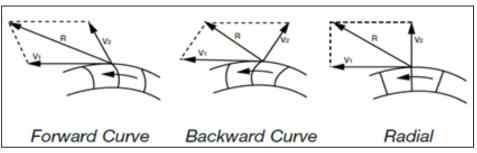
Improved reliability

Lower mechanical losses

Longer bearing life

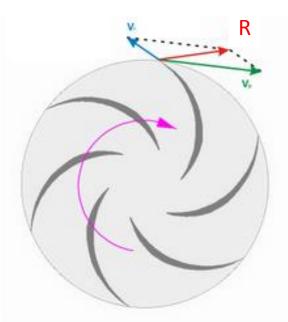
Impeller geometry has been optimized in order to **enlarge the compressor stability range** (A-B curve) **and also the efficiency,** thus to grant chiller operations at full and part loads even in adverse conditions.

Design items:

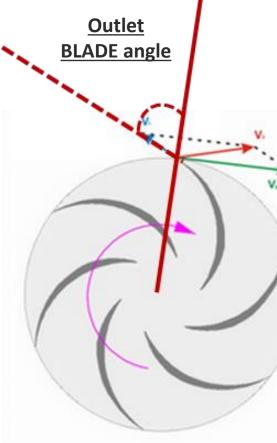

- Fully machined impeller with backwards blades
- Outlet blade angle
- Blades number and thickness
- Leading edge geometry

The gas flow has been simulated by **Computational Fluid Dynamics (CFD) codes** for both 1st and 2nd stage and prediction has been then verified with tests conducted on prototypes.

The impeller is **fully machined** - surface has very low roughness: **+ 2% advantage in efficiency** vs conventional casting.

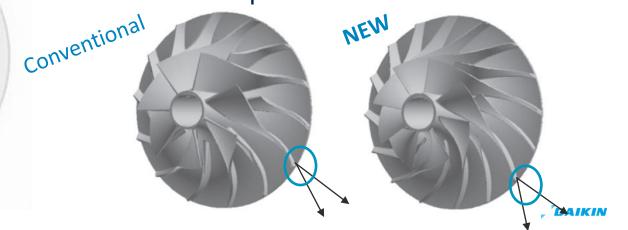

FULLY MACHINED IMPELLER WITH BACKWARDS BLADES

Blades are **oriented backwards** in order to grant **better efficiency...**



V1: Impeller tip speed V2: Radial velocity of gas R: Resultant velocity ...indeed:

- resultant velocity and friction losses are lower.
- $\bullet_{_{23}}$ power needed by the impeller is lower



OUTLET BLADE ANGLE

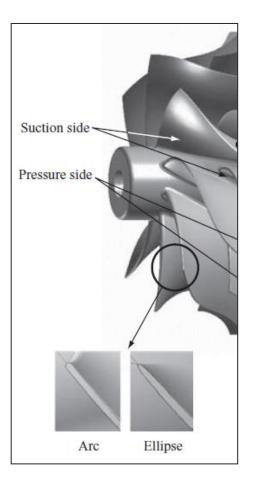
The larger the impeller outlet blade angle the lower the min flow at which surge occurs.

Such an angle has been increased in order to enlarge the compressor stability range vs conventional impeller.

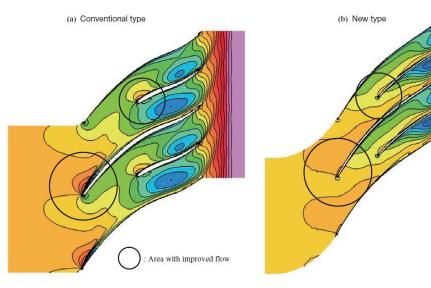
OPTIMIZATION OF IMPELLER GEOMETRY BLADES NUMBER AND THICKNESS

High nr of blades allows load reduction on each blade, therefore blade thickness can be reduced.

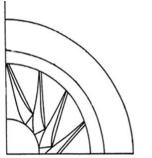
Beneficial effects on efficiency and wider stability range.

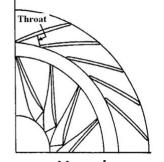

Compressor design:

- Total nr of blades has been increased by the addition of intermediate splitter blades.
- Blade thickness has been reduced.
- Length of splitter blades has been increased by inclining them upstream to better drive the gas flow between full and splitter blades.

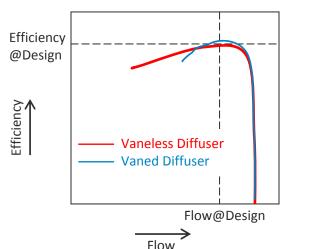

Full blade

Splitter blade

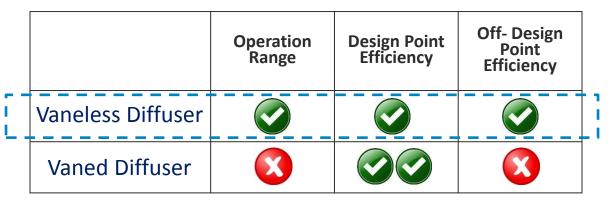



LEADING EDGE GEOMETRY

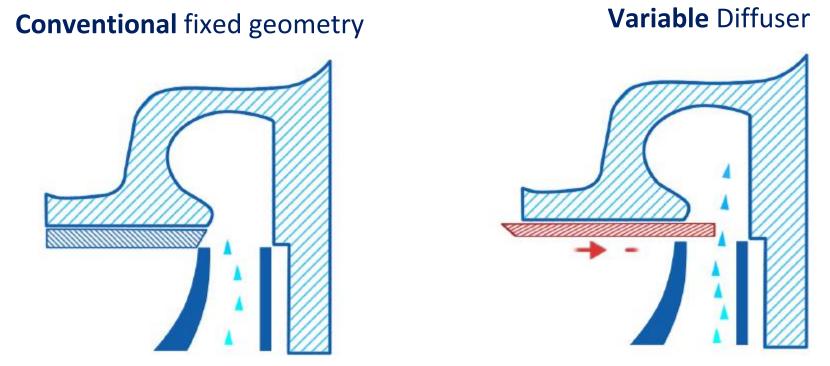
Shape modified **from arc to ellipse** to **improve flow pattern inside the impeller** by suppressing sudden acceleration and deceleration at the edge.


DIFFUSER (VANELESS VS VANED)

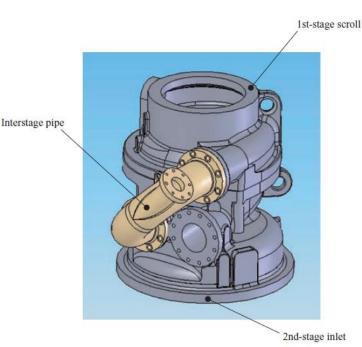
Vaneless Diffuser


Vaned Diffuser

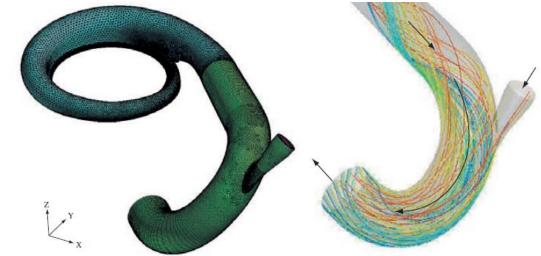
Kinetic energy at impeller outlet is converted into pressure energy through the diffuser.


Vaneless diffuser has been selected since allows wider operating range and also good off-design point efficiency.

Vaneless diffuser helps also to lower sound level at diffuser.

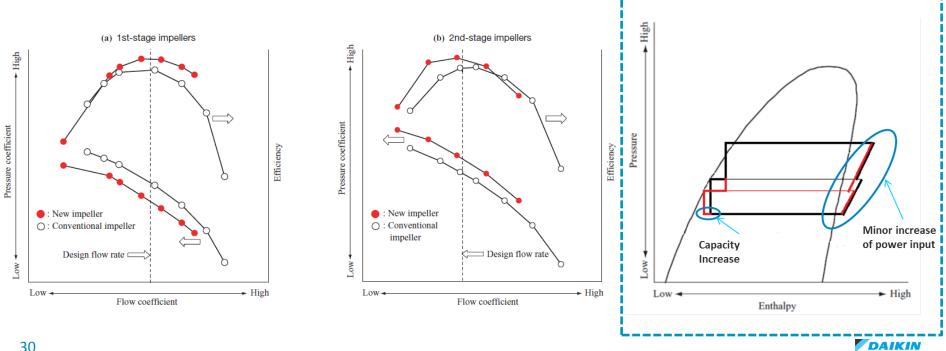

DAIKIN

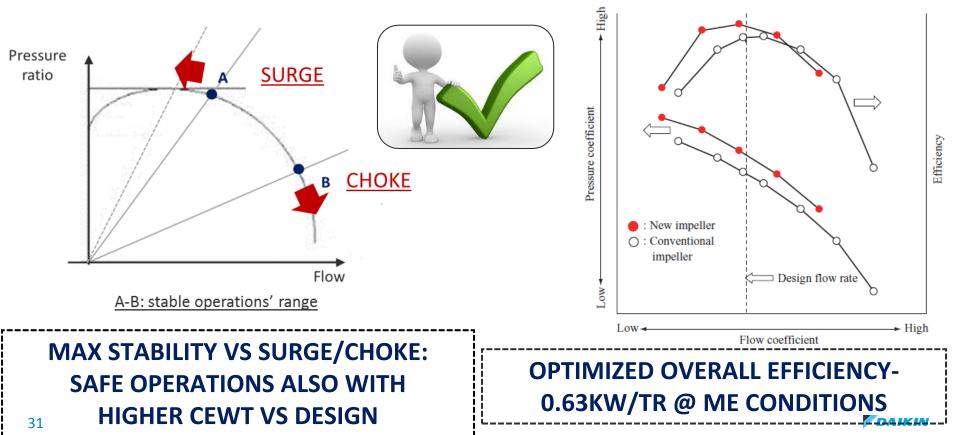
DIFFUSER (DDC = DISCHARGE DIFFUSER CONTROL)



Discharge Diffuser Control avoids surging and provides 10% efficiency increase at part loads vs hot gas by-pass

INTERSTAGE PIPING (ECONOMIZER)


Piping shape has been designed **to avoid any backflow and ensure good mix** of high temperature gas from 1st stage and low temperature gas from economizer in order to prevent any efficiency loss at 2nd stage.


29

RESULTS - EFFICIENCY

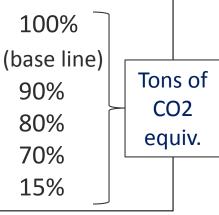
Pressure level between 1st and 2nd stage has been set in order to enhance the economized cycle and overall chiller performance

COMPRESSOR DESIGN - CONCLUSIONS THE GOAL HAS BEEN ACHIEVED!

From Compressor to Chiller

WCT-series, optimized for District Cooling applications

3000TR Cooling Capacity @ Middle East DC conditions 0.63kW/TR Zero Tolerance


Future-ready (new refrigerants)

MOP 28 – Kigali amendment

<u>HFC Phase-down schedule</u> for Bahrain, India, Iran, Iraq, Kuwait, Oman, Pakistan, Qatar, Saudi Arabia and UAE

2028 to 2031:

2032 to 2036: 2037 to 2041: 2042 to 2046: 2047 and therefore:

WCT series - R134a -

- No Phase Out planned for HFCs, incl. R134a. The process requires a gradual reduction of HFCs' consumption.
 - Daikin/Daikin Chemicals is also a producer of refrigerants and is working to provide:
 - Retrofit package for R-134a WCT units already installed
 - WCT new series, fitted with low
 GWP refrigerant.

THANK YOU