IDEA CAMPUSENERGY2017

February 20-24 Miami, FL

Low Temperature Thermal Networks: Domestic Hot Water Production

Jeff Flannery

Table of contents

- 1. Objective for DHW devices
- 2. Building demands
- 3. Centralized solutions
- 4. Decentralized solutions
- **5.** Product range

DHW temperature: Comfort/Use/Safety

DHW temperature: Legionella bacteria

- Legionella Growth
- 77°F (25°C) starts growing
- 131°F (55°C) stops growing
- 97°F (36°C) is ideal
- 6 to 8 Hr. regeneration at 97°F (36°C)
- Thrives in stagnant water
- Dead pipe ends
- Large storage cylinders
- Pasteurization time depends on temperature

DHW temperature: Legionella growth

DHW standards: flow and temperature

- Standards are available:
- North America
 - Regional, state, and local plumbing codes
 - ANSI/ASHRAE/IES 90.1: Energy Standard for Buildings Except Low-Rise Residential Buildings
 - ASHRAE Guideline 12: Minimizing the risk of Legionellosis Associated with Building Water Systems
- Danish DS439:2009 standard
- Swedish technical regulations F:101
- German DIN4708

DHW standards: Storage vessel size

- Euroheat & Power have technical guidelines:
- Storage Volume > 106 gal (400L)
- DHW temperature predefined to 140°F (60C) according DIN4708
- Boil the cylinder 1 time per 24h to kill bacteria
- Storage Volume < 106 gal (400L)
- DHW temperature predefined to 140°F (60C) according DIN4708
- no boiling requirement
- Storage Volume < 3.2 quart (3L)
- DHW temperature not predefined according DIN4747
- 113°F (45°C) is possible

Table of contents

- 1. Objective for DHW devices
- 2. Building demands
- 3. Centralized solutions
- 4. Decentralized solutions
- **5.** Product range

Measurements from 33 unit apartment building

Diversity factors for "standard" apartments from various European norms

Measurements from a sports facility

Table of contents

- 1. Objective for DHW devices
- 2. Building demands
- 3. Centralized solutions
- 4. Decentralized solutions
- **5.** Product range

Indirect Heating and Instantaneously produced domestic hot water

Indirect Heating and DHW charging system

Comparison between DHW applications

Instantaneous DHW application

- Benefits:
 - Unlimited amount of DHW water
 - Minimum risk of Legionella
 - Lower costs
 - Low return temperatures and heat losses
 - Lower flow temperatures possible
 - Minimized space demand
 - Less maintenance
- Limitations
 - Higher flow rates on the DH side

Storage charging cylinder

- Benefits
 - Lower connecting load
- Limitations
 - Higher heat losses
 - Higher DH return temperatures
 - Higher costs
 - Not suitable for low temperature systems, as high cylinder temperatures are needed to eliminate risk of Legionella
 - Maximum space demand
 - More maintenance

Hamburg HafenCity

- 50,000 residents by 2020.
- 380 Acre mixed residential development is setting green standards
- CHP is used to heat buildings in HafenCity
 90% of the primary energy is utilized.
- Compared to a conventional fossil fuels:
 - 3.7 million €/yr. in fuel savings
 - 14,000 tons/yr. of CO2 emission avoided
- +125 Substations connected to the district heating network
- 80 include central DHW systems

Table of contents

- 1. Objective for DHW devices
- 2. Building demands
- 3. Centralized solutions
- 4. Decentralized solutions
- **5.** Product range

Decentralized DHW-production: unit stations

Control Principles in unit substations

Scenario DHW DHS) DHR DCW >

Highbury football stadium, London

- Re-development into 719 residential apartments
- 4 Grandstands converted into studio, one, two and three bedroom apartments with 7-storey glassfronts.
- Each apartment is equipped with a prefabricated substation from Danfoss and connected to a central gas fired boiler.
- The substations provide space heating and domestic hot water with built in metering for accurate billing and fault detection.
- Supports London Climate Change Agency goals to reduce CO2 emissions and remove 25% of electricity grid production.
- Central Plant solutions were the most supportive of these goals

Facts on Installed Danfoss substations:

Pressure Level: PN10 Differential pressure: 0,7bar Design temperatures for heating: 70/26C-35/25C Design temperatures for DHW: 70/28C-60/10C

4 sizes of substations:

- Akva Lux VX (5 kW heating and 42 kW DHW)
- Akva Lux VX (5 kW heating and 53 kW DHW)
- Akva Lux VX (5 kW heating and 60 kW DHW)
- Termix VVX Compact 20 (15 kW heating and 100 kW DHW)

Table of contents

- 1. Objective for DHW devices
- 2. Building demands
- 3. Centralized solutions
- 4. Decentralized solutions
- 5. Product range

Industrialized Solutions for all applications

Table of contents

- 1. Objective for DHW devices
- 2. Building demands
- 3. Centralized solutions
- 4. Decentralized solutions
- **5.** Product range

BACK-UP SLIDES

Temperature considerations/constrains

- In Denmark Building Codes prescribes 70/40C as DH design temperatures in new networks. Lower is OK.
- On the same time pilot- and research projects on low temperature systems with 55C/50C and even 40C flow temperatures are ongoing
- As lower temperature level as more surplus heat and renewable sources like solar and heatpumps can be utilized optimally
- Solar collector feed-in temperature in Austria is 60/35-29/54C
- Usage of a condensing boiler requires max 57C return temperature to stay within condensation area
- DHW has by cylinders to be heated to 60C, which requires minimum 65C primary
- Decentralized(<3L) instantanous water heater can produce 45C by minimum 50C primary
- In case the district heating must be utilized for absorption chillers the flowtemperature from source should minimum be about 95C to get 80% efficiency(see example)
- CHP and solar requires storage to achieve best efficiency

Comfort criterias on DHW temperatures by VDI6003

Table 1. Comfort criteria for washbasins

Usable temperature \mathcal{G}_{ww} = 40 °C"		Performance level			
Comfort criteria	Abbreviation/unit	1	II	III	
a) Time interval during serial usage	t _{ww} in min	max. 5	0	0	
 Possibility of simultaneous use of two or more draw-off points 		no	yes	yes	
c) Maximum temperature deviation during usage	in K	±5	±4	±2	
d) Minimum draw-off rate	V in ℓ/min	3	5	6	
e) Minimum draw-off level	V _B in ℓ	4	25	50	
 f) Maximum time to reach the usable temperature under consideration of c) and d) 	t₂in s	60 ^{**)}	18	10	

^{*)} see VDI 2067 Part 22

Table 2. Comfort criteria for showers

Usable temperature \mathcal{S}_{ww} = 42 °C")	Performance level			
Comfort criteria	Abbreviation/unit	1	II	III
a) Time interval during serial usage	t _{ww} in min	max. 8	max. 5	0
 b) Possibility of simultaneous use of two or more draw-off points 		no	yes	yes
c) Maximum temperature deviation during usage	in K	±5	±4	±2
d) Minimum draw-off rate	V in ℓ/min	7	9	9
e) Minimum draw-off level	V _B in ℓ	28	60	120
 f) Maximum time to reach the usable temperature under consideration of c) and d) 	t₂ in s	~26**)	10	7

^{*)} see VDI 2067 Part 22

^{**)} based on the 3 litre regulation of worksheet DVGW W 553

^{**)} based on the 3 litre regulation of worksheet DVGW W 553

Example of sizing of a DHW cylinder with internal coil for appartments from Euroheat & Power.

HEATING CAPACITY

- DHW temperature 60 °C;
- Cold water temperature 10 °C;
- standard apartments.

Example with 10 appartments: 600L cylinder with 24kW coil.

Example of sizing of a DHW charging system for appartments from Euroheat & Power.

HEATING CAPACITY

- DHW temperature 60 °C;
- Cold water temperature 10 °C;
- standard apartments.

Example with 10 appartments: 500L cylinder with 16kW in external heatexchanger.

Application.

DH by low-temperature system tests in practise - 50/25C

Lystrup (DK)

A project supported by the Danish government

•40 low-energy class I 2015 single-family houses – 41kW/m2

•Higher district heating water speed, higher pressure drop – smaller dimensions

- <u>Testing of two types of low-temp.</u> substations
- DH-storage: low kW-load
 - and instantanous DHW with efficient hex
- Only 17% heat loss from low temp DH network vs. 41% for traditional 80/40°C
- •Additional pumping energy is only 4% due to small dimensions
- Good cost-efficiency overall
- •No complaints from end-customers
- •Instantaneous house substation with lower total heat loss & lower purchase price was marginally best

Inner diameter 14 mm rs. 16mm!

Energy savings: DanFlat leads to lower energy consumption

- With DanFlat, tenants are in full control of their energy use.
 - This reduces energy consumption considerably.
- Studies from Denmark show that individual metering can reduce energy consumption by at least 30%.

Individual metering since 01.1998

Energy savings: Reduced heat loss

- Comparative studies of three distribution systems documents significant advantages of the DanFlat solution
- Heat loss from pipes reduced by more than 40% compared to central DHW horizontal pipe system
- Heat loss from pipes reduced by more than 80% compared to single vertical pipe system

Space consumption: Comparison with traditional systems

- DanFlat systems provide substantial reductions in space consumption
- Space requirements up to 80% less than with individual gas-fuelled boilers
- DanFlat systems take up slightly more space than systems with central domestic hot water production. In return, they free up considerable space in basement areas.

Individual gas boiler: 0.32.

Boiler (0.15 m3) + chimney (0.17 m3)

DanFlat: 0.062. Flat station (0.062 m3)

Central domestic hot water: 0.02.

Water meter (0.01 m3) + heat meter (0.01 m3)

^{*} Storage tank in basement will take up significantly more space than in a DanFlat solution

Low total costs

Case study, Munich, Germany: New building cost effectiveness analysis

50 apartments – new building			Variant 1	Variant 2	Variant 3
			Electrical DHW boiler in apartment Central heating	Central DHW Central heating	Decentralized DHW Central heating + buffer storage
1. 1.1 1.2	Investment and capital costs Investment costs Capital-dependent costs Relation to Variant 1	€ €/a %	67.334,00 4.865,83 100,00	85.505,00 7.062,68 145,18	72.291,00 6.277,80 129,02
2. 2.1 2.2	Consumption related costs Heat loss Energy costs Circulation pumps Total Relation to Variant 1	€ €/a €/a €/a %	3.012,81 253,99 3.266,80 100,00	2.168,03 177,18 2.345,21 71,79	745,42 164,03 909,45 27,84
3. 3.1	Operation related costs Maintenance Total Relation to Variant 1	€ €/a €/a %	1.080,00 1.080,00 100,00	1.170,00 1.170,00 108,33	1.170,00 1.170,00 108,33
4.	Annual costs Relation to Variant 1	€/a %	9.212,62 100,00	10.577,89 114,82	8.357,25 90,72

Source: Quelle Kulle & Hofstetter, Stadtwerke Munchen