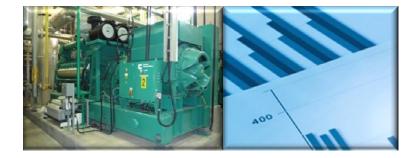


## Campus Based Energy Security & Carbon Footprint Reduction: The University of Minnesota's Master Energy Plan


Presented by U.S. Energy Services, Inc. Wednesday, February 10, 2016



# AGENDA

#### **Discussion Topics: A Two-Part Solution**

- Situation Background and CHP Solution
- Price Risk Management Plan Solution





# Background and Cleaner Power Generation Solution with CHP





#### **U of M Energy Management Requirements**

- Reliable
  - Ensure reliable energy supply
- Sustainable
  - ➢ Reduce CO₂ emissions
- Cost-effective
  - Identify energy efficient opportunities and balance upfront investment costs with long-term savings potential









# **Utility Master Planning**

#### As of June 2009, the situation was clear:

- Steam capacity was inadequate
- Boilers were aging and beyond their useful life
- Competing with other higher education institutions
- Sustainability plans Zero Carbon by 2050
- The conclusion was to add two package boilers...

#### BUT

- Benchmarking other district energy facilities
- Another option, CHP, could save the University \$'s



# **Summary of Challenges**

#### Reliability



- Projected shortage of 'firm' steam capacity
- Risk to research, teaching and operations due to 100% of steam for Minneapolis campus coming from one site served from single tunnel away from campus

### Sustainability

Commitment to provide energy with less carbon output

#### Cost Effectiveness

- Impact to utility rates after adding steam capacity
- Projected increases in purchased electrical costs
- Needed site for next efficient chilled water plant



## **Sustainability**





# **Sustainability Commitment**

#### **Carbon Footprint Reduction**

- 10 to 13.5% of the Campus 2008 baseline
- 81,000 metric tons of CO2 (Recalculated number from 65,000)



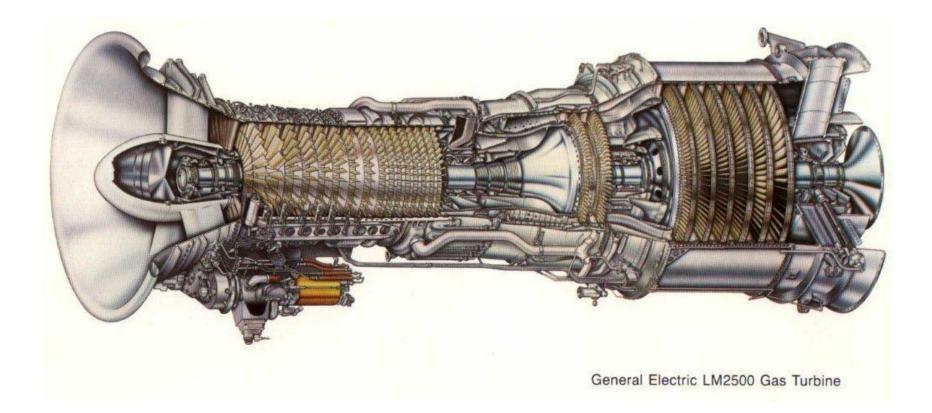
- 17,000 passenger vehicles in a typical year or
- 192,857,143 miles driven by the average car or,
   22.3 wind turbines

Source: epa.gov/cleanenergy/energy-resources/calculator



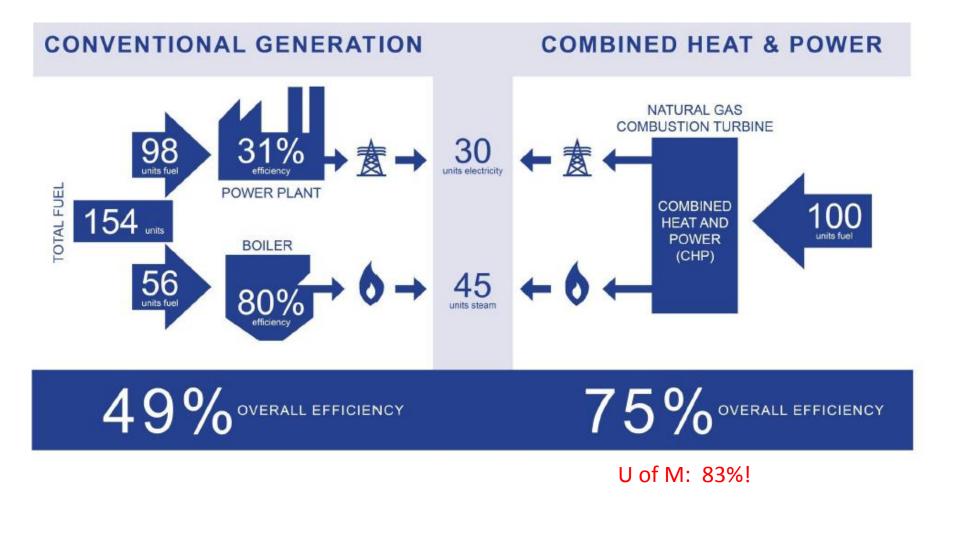


## **CHP Project Solution**


- Addresses the deficiencies of the Old Main Utility Building as part of developing a multiple utility services building
- Installs a dual fuel Combustion Turbine Generator capable of exporting 20.4 MW to campus
- Installs a duct fired Heat Recovery Steam Generator



- Enhances campus electrical power distribution infrastructure
- Provides dedicated space for future chilled water and package boiler equipment




#### **CHP Combustion Turbine**





#### **CHP Efficiency**





## **Projected Utility Rates with CHP**

|                | Current<br>University<br>Utility<br>Rate | Projected Rates<br>With Project |
|----------------|------------------------------------------|---------------------------------|
| Steam          | \$21.95 <sup>1</sup>                     | \$19.99 <sup>1</sup>            |
| (Rates \$/Mlb) | \$21.98 <sup>2</sup>                     | \$22.27 <sup>2</sup>            |
| Electric       | \$0.0991 <sup>1</sup>                    | \$0.0900 <sup>1</sup>           |
| (Rate \$/kWh)  | \$0.0991 <sup>2</sup>                    | \$0.0950 <sup>2</sup>           |

1 = FY12 2 = FY14



## **Projected Utility Costs with CHP**

|                            | Current<br>University<br>Utility Costs | Projected Costs<br>with a<br>New Boiler<br>and<br>NO CHP Project | Projected Costs<br>with the<br>CHP Project |
|----------------------------|----------------------------------------|------------------------------------------------------------------|--------------------------------------------|
| Steam<br>(Annual Total)    | \$43,141,000                           | \$45,553,000                                                     | \$43,720,000                               |
| Electric<br>(Annual Total) | \$39,338,000                           | \$41,658,000                                                     | \$37,692,000                               |
| <b>Total Annual Cost:</b>  | \$82,478,000                           | \$87,211,000                                                     | \$81,411,000                               |



### Projected Cost to Produce vs. Purchase Electricity \$/kWh with CHP

|                                 | Projected Rates with<br>Project: |
|---------------------------------|----------------------------------|
| U's Cost per kWh to<br>Produce  | \$0.0258                         |
| Effective Cost/kWh              | \$0.0770                         |
| U's Cost per kWh to<br>Purchase | \$0.0810                         |



# **Project Benefit Summary**

#### Cost-effective

- Projected to reduce University utility costs by \$7 million annually
- Provides a financial hedge against purchased electrical costs
- Creates cost effective site for next chilled water plant

#### Reliable

- Provides sufficient 'firm' capacity for 15 years based on current projections
- Provides 2<sup>nd</sup> source of steam production dramatically reducing risk to campus research, teaching, and campus community

#### Sustainable

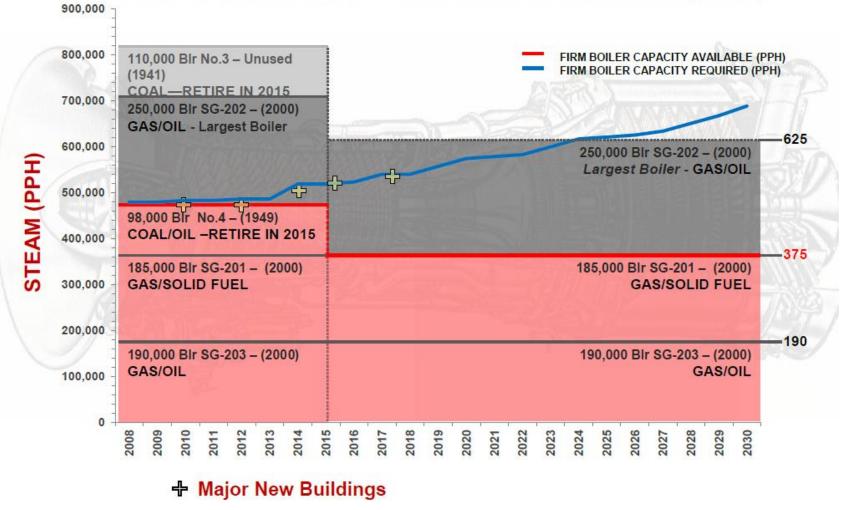
- Reduces Campus Carbon Footprint by 10%
- Significant increase in efficiency of utility systems



# **Potential Options for Operations:**

| Option | <b>Ownership of Plants</b>                      | <b>Operation of Plants</b>                               |
|--------|-------------------------------------------------|----------------------------------------------------------|
| 1      | University Owns:<br>- State and U funding mix   | University Operates                                      |
| 2      | University Owns:<br>- State and U funding mix   | University Contracts Management<br>(current arrangement) |
| 3      | U Enters into Long-term Lease<br>w/ Third Party | U Purchases Utilities from 3 <sup>rd</sup><br>Party      |



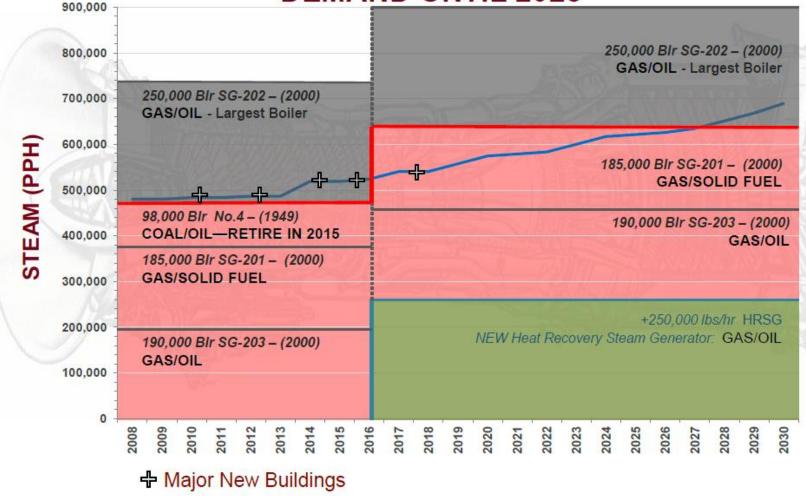

## **Potential Options – Analysis**

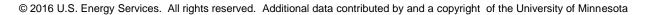
|   | Option                                              | Operating and Capital Costs                                                                                                                                                | Reliability/Control                                                                                                              |
|---|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| 1 | University Owns<br>and Operates                     | Lowest:<br>• U pays operational costs<br>• U pays portion of capital cost                                                                                                  | <ul> <li>Highest:</li> <li>University maintains most control.</li> <li>Would require U to ramp up staffing/expertise.</li> </ul> |
| 2 | University Owns<br>but Contracts out<br>Mgmt.       | Moderate:<br>• U pays operational costs<br>• U pays portion of capital costs<br>• U pays management fee<br>• U pays profit/incentive                                       | <ul> <li>Moderate:</li> <li>University manages through contract provisions</li> <li>Utilizes industry expertise</li> </ul>       |
| 3 | U Enters into Long-<br>term Lease w/<br>Third Party | <ul> <li>Highest:</li> <li>U pays operational costs</li> <li>U pays 100% capital costs in rates</li> <li>U pays management fee</li> <li>U pays profit/incentive</li> </ul> | <ul> <li>Lowest:</li> <li>University has least control</li> <li>Subject to operational decisions by provider.</li> </ul>         |



## **Sizing Driven by Steam Requirements**

#### Steam Demand Exceeds Reliable Steam Capacity






#### **The Solution:**

#### PROPOSED BOILER CAPACITY MEETS PROJECTED DEMAND UNTIL 2028







# Supplier Diversification and Long Term Balanced Risk Management Plan





#### **Supplier Diversification & Long Term Contracts**

- Credit approved for multiple suppliers (BP Energy, Shell Energy, UET, etc.)
- Typically \$.02~\$.10/MMBTU savings when suppliers compete for business
- Negotiated 25 year discounted gas transport rate with utility



#### **Balanced Position Hedge Program: Definition**

- Defined hedging strategy quantifiable targets + process for reassessment
- Defined execution strategy defines the "who" and "how" of hedging
- Budget oriented: 40-75% hedged up to 36 months into future





#### **Balanced Position Hedge Program: Goals**

 Insurance against volatility → component dedicated to budget predictability

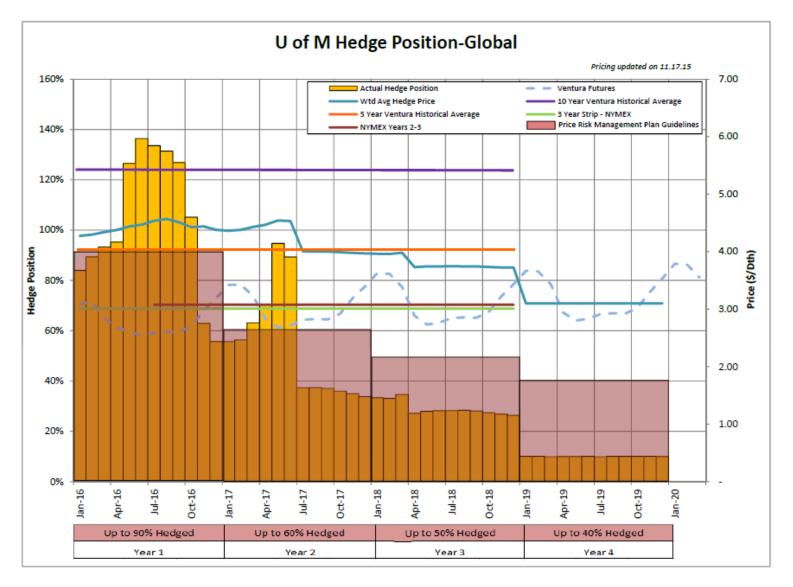


- Defines timeframe windows for layering up to supply hedge targets
- Bounded view of the market:
   % around equilibrium
- Maintain flexibility and cost effectiveness



#### **Balanced Position Hedge Program: Goals**

- Purchases slide forward from prompt month → min/max targets
- Purchase layers are *guides*, not absolutes: maintain flexibility to adjust
- Sliding purchase scale is synchronized to budget cycles
- Basis managed separately from NYMEX commodity pricing




#### Balanced Position Hedge Program: Backtesting

- Budget Year FOM index + transport + fuel
- Yearly budget costs
- 3 year average FOM index + transport + fuel
- 3 year average budgeted costs



#### **University of Minnesota Hedge Position**





# Thank you for your time and attention!

#### To learn more about College/University Energy Management, please contact:

#### **Matt Haakenstad**

www.usenergyservices.com

Vice President, Advisory Services U.S. Energy Services <u>mhaakenstad@usenergyservices.com</u> 763-543-4640

#### **Bruce Hoffarber**

Vice President, Market Development bhoffaarber@usenergyservices.com 763-543-4625

#### Jerome Malmquist

Director, Energy Management University of Minnesota <u>malmq003@umn.edu</u> 612-625-3438

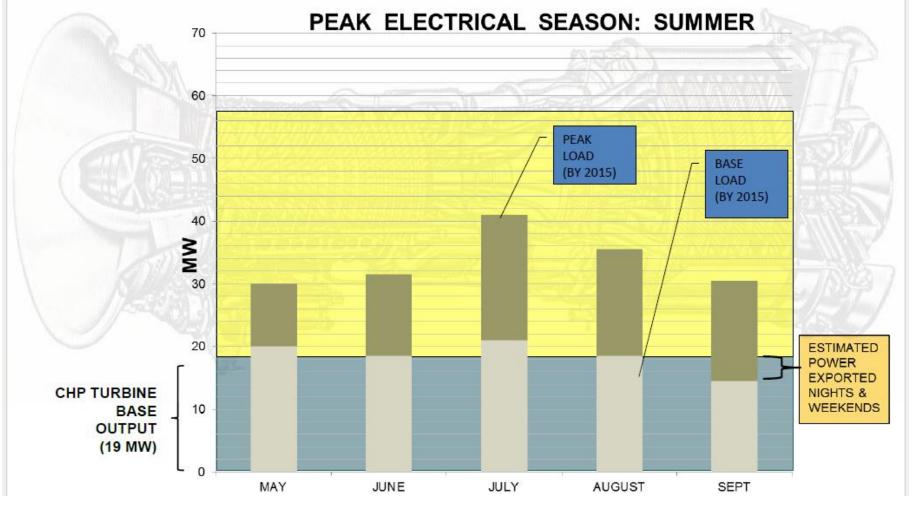


# Appendix





#### **Electric Sizing Limited by Loads**


#### EAST BANK: ELECTRIC DEMAND VS. CHP CAPACITY

NON-PEAK ELECTRICAL SEASON (FALL/WINTER/SPRING) 70 60 PEAK LOAD BASE (BY 2015) LOAD 50 (BY 2015) 40 ₩ 30 20 CHP TURBINE BASE 10 OUTPUT (22 MW) 0 OCT NOV DEC JAN FEB MAR APRIL



#### **Electric Sizing Limited by Loads**

#### EAST BANK: ELECTRIC DEMAND VS. CHP CAPACITY



