MERCK WEST POINT, PA B45 OPTIMIZATION PROJECT

Leveraging the existing plant PLC, for a non-proprietary solution to chiller plant optimization

Mike Nyhan P.E., Merck & Co., Inc. Eric Silk CEM, Thermo Systems LLC

Outline

- Merck Facilities Background
- Economic Results
- Project Drivers
- Project Approach
- Optimization Results
- Conclusions
- Q & A

Background

- Merck WP campus is a mixed use manufacturing, research, and administration site with over 60,000 tons of chilled water cooling capacity across 8 chiller buildings
- Building 45 is a large standalone research building with its own dedicated chiller plant
 - (5) 1,200 ton electric Trane chiller
 - Air handlers are 100% OA / minimal process equipment load

Project Economics

Initial Estimate Stage

- Cost
 - \$600,000
- Energy Savings
 - \$161,000 or 2.4MM kW/hr
- ACT129 Rebate
 - \$45,000 (prescriptive rebate only)
- ROI
 - 3.44 years

Project Completion

- Cost
 - **\$650,000**
- Energy Savings
 - \$186,000 or 2.7MM kW/hr
- ACT129 Rebate
 - \$213,000 (custom rebate process)
- ROI
 - 2.34 years

B45 Complex

Merck WP Utility Map (45)

Building 45 Operational Issues

- Low Delta T syndrome during winter and shoulder months
 - Chiller plant must provide 42F water throughout the year
 - Remember, most users are 100% outside air!
 - Loop cannot be shutdown because of intermittent chilled water users and validation constraints
 - Delta T ranging between 1-3F in the winter (very inefficient)

High Delta P

- Delta P was maintained at 30 psi all year and most of the flow was passing through a full size bypass from supply to return
- Damage and poor control by temperature control valves on air handlers
- Fear to change to the dP operators did not understand
- Tremendous waste of equipment energy

Building 45 Design Issues

- Unable to turn down equipment
 - All pumps were across the line
- Pumping excess flow = highly inefficient
- Operating chiller in the winter is lightly loaded
 - Typical winter tonnage is in the <200 tons range
- Poor control over tower water temperature with across the line pumps
- Building is overdesigned
 - At most, 3 chillers of the 5 are required during peak summer loads

Optimization Opportunity

- Merck Global Energy Team identified Building 45 as a prime candidate for a building optimization project based on low dT and high dP
- Investigated both proprietary and non-proprietary vendor solutions.
- Energy Conservation Measures (ECMs) focused on VFD drives for all chilled and condenser water pumps and advanced control sequencing
 - Staging of specific pumps and chillers based on outside air / building load conditions

Optimization Constraints

- No impact to building operation
 - Continuous chilled water supply
- Temperature reset was not part of the scope
- Leverage existing plant capitol investment
- Open box solution was preferred
 - No proprietary "black box" software or programming
 - Utilize existing industrial grade PLCs
- Desire to own system
 - Did not want a cloud based or licensed solution

Optimization Project Selection / Award

- Vendor Selection
 - ROI analysis based on the three vendor ECMs
 - Experience with critical, large chiller plants
 - Consideration to a non-proprietary solution
 - Initial project cost
 - Life cycle costs

System Operational Analysis (baseline)

- Data collection and site survey
 - Extracted validated data from existing site historian
 - Collect actual energy rate structure
- Develop operating model of existing plant (using data)
 - 8760 hourly analysis method
 - Water flow, dT, cooling load and load durations
 - Did not use bin data or simplified eff. Metrics such as NPLV
- Develop hydraulic model
- Existing equipment efficiency mapping
 - Used <u>metered data</u>, formulas used in equipment design and manufactures performance curves.
 - CW & CHW Pumps, Chillers, Fans

Operating Model

Graph 9 – Cooling Load Duration Curve

Existing Equipment Efficiency Mapping

Graph 15 - Chiller 4 (CH-4) Efficiency Plot

Graph 10 - Chiller 1 (CH-1) Efficiency Plot

Optimization Approach

- Run custom plant performance model
 - Model plant sequence modifications in performance model
- Compare baseline model with optimized model to determine energy savings
- Develop and deploy the optimized sequence of operations within the existing balance of plant PLC controller.
- Startup & functional checkout
- Measurement and verification

Optimized Sequence of Operations

- Optimized sequence of operations
 - A set of rules to operate equipment within the following constraints:
 - Safety and <u>reliability</u>.
 - The most <u>efficient</u> operating point while satisfying demand.
 - For every load there is an optimal plant operating point
 - Within <u>owner defined</u> constraints.
 - Combined rules and constraints to develop the optimized SOO. No added control system hardware or software

Equipment & System Changes

- 5 chilled water pump VFD drives
- 5 condenser water pump VFD drives
- Interface between plant control system (PLC) and building management system (Siemens)
 - AHU cooling coil valve positions for dP reset
- Optimized Sequence of Operations
 - All code changes were well documented and implemented within the existing non-proprietary, industrial grade PLC.
 - All logic was turned over to system owner

Optimization Results

- Plant average reduction in kW
 - 43%
- Chiller average reduction in kW
 - 28%
- CW pump average reduction in kW
 - 76%
- CHW pump average reduction in kW
 - 73%
- Tower average reduction in kW
 - 42%
- Average reduction in CW flow
 - 63%
- Average reduction in CHW flow
 - 60%

Graphics – Load CV Positions

Graphics - Dashboard

Graphics - Dahsboard

Merck WP Utility Map (Other CHW Plants)

Conclusions

- Merck achieved significant energy savings by performing chiller plant optimization within the existing control system.
- Merck was able to utilize their existing equipment smarter by applying good engineering practices, not a widget/black box
- Build a data driven model to accurately understand the plant
- Immediate energy savings
- Building operators satisfied
- Merck plans to implement optimization programs in all West Point campus chiller plants

Q&A