

Improve System Efficiency and Reduce Construction Cost with Low Temperature District Cooling
Case Study: McCormick Place Convention Center, Chicago, IL

Mehdi Jalayerian, PE, LEED AP BD+C Executive Vice President – Global Practice Leader

> Daniel Cohen, PE, BEMP, LEED AP Senior Associate

Agenda

Overview and Rationale of Central Plants Plant Configuration **Distribution Systems System Parameters** Case Study: McCormick Place Convention Center Questions and Discussion

Learning Objectives:

- Central Plant Conceptualization
- Increase Plant Efficiency
- Low Temperature Application
- Low Flow Systems Evaluation
- Distributed District Plants
- Campus Master Planning

Rationale for Central Plant

Centralized vs. Decentralized - Plant Capacity

Thermal Storage systems - Potential Benefits

Lower utility costs

- Lower on-peak electrical consumption (kWh)
- Lower on-peak electrical demand (kW)

Smaller equipment size

- Smaller chiller
- Smaller electrical service (A)

Reduced installed cost

May qualify for utility rebates or other incentives

Distribution System

Typical Central/District Cooling Plant

Chilled Water Distribution

INTEGRAL PRIMARY-SECONDARY PIPING

HEAT EXCHANGER PRIMARY-SECONDARY PIPING

Primary System Flow vs. Load

Integration of Future Cooling Plants

PRIMARY COOLING PLANT – FUTURE ADDITIONS/EXPANSIONS

Typical Central/District Cooling Plant

Central Plant Hydronic Flow

Comparative Plant Parameters - 800 Ton Capacity

	Traditional	Efficient	
Chilled Water Supply	44°F	41°F	
Cooling Coil WTR	10°F (2.4 gpm/ton)	16°F (1.5 gpm/ton)	37.6% Flow Reduction
Cooling Tower Range	10°F (3.0 gpm/ton)	15°F (2.0 gpm/ton)	33.3% Flow Reduction
Chiller Power	0.580 kw/ton	0.651 kw/ton	+0.071 kw/ton
Chilled Water Pump Power	0.065 kw/ton	0.020 kw/ton	-0.045 kw/ton
Cooling Tower Power	0.040 kw/ton	0.030 kw/ton	-0.010 kw/ton
Condenser Water Pump Power	0.054 kw/ton	0.019 kw/ton	-0.035 kw/ton
Plant Power	0.739 kw/ton	0.720 kw/ton	-0.019 kw/ton

Plant Energy and Systems Chilled Water Flow

Overall System Impact

District Cooling Plant - Chicago Thermal

Campus Cooling Plant - Emirates Palace

Seven Star Palace Hotel & Conference Center

Abu Dhabi, UAE

Design Conditions:

42/58 CHWS/R 10,000 Ton Central Plant

2,500,000 Square Feet

Central Plant and Site Services Royal Palaces
Minister Suites
Guest Rooms
Atrium
Ballroom
Conferencing Facility
Restaurants
Shops
Parking Garage

Campus Cooling Plant - Education City

Case Study - McCormick Place

Explore the Campus

Plant Exploration

- (3) Ammonia Screw Compressors coupled with turbine generators
- · 20,000 Tons Capacity
- 8.5million gallon TES Tank, 133,000 Ton-hrs

Cooling Load

Campus Peak

Campus Peak Month

Design Parameters

Chilled Water

- 27°F Primary Chilled Water Supply
- 56°F Chilled Water Return
- 22% Ethylene Glycol
- Over 100 miles of Hydronic Piping

Building Distribution

- . Decoupling with Heat Exchangers
- 34°F Secondary Chilled Water Supply
- 58°F Chilled Water Return

Air Distribution

- 45°F Supply Air
- · Induction diffusers
- . Over 50 miles of Duct Distribution

The Final Destination

On-going Optimization - District Plants

Improve System Efficiency and Reduce Construction Cost with Low Temperature District Cooling
Case Study: McCormick Place Convention Center, Chicago, IL

Thank You, Questions?

www.esdglobal.com