

Case Study – Portsmouth Naval Shipyard Resiliency Project

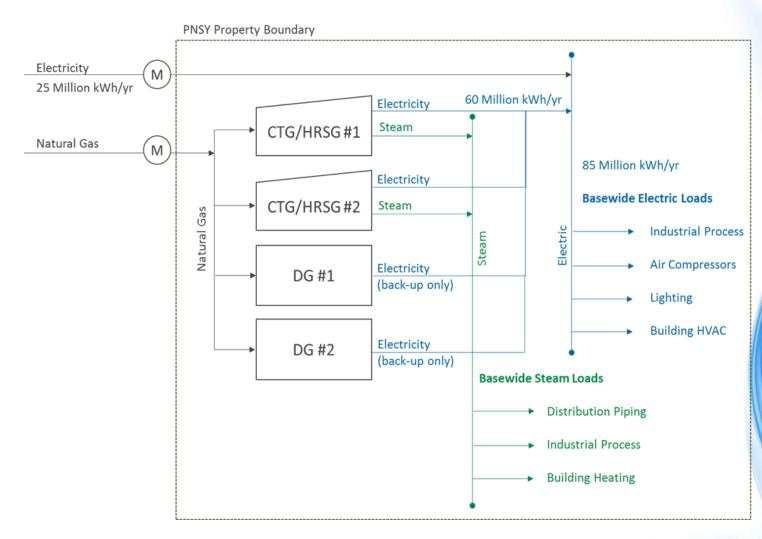
James B. Redden, P. E. Vice President- Energy Assets Ameresco, Inc.

Implementing Micro Grids Monday June 26, 2017,

HISTORY OF THE COGENERATION PLANT

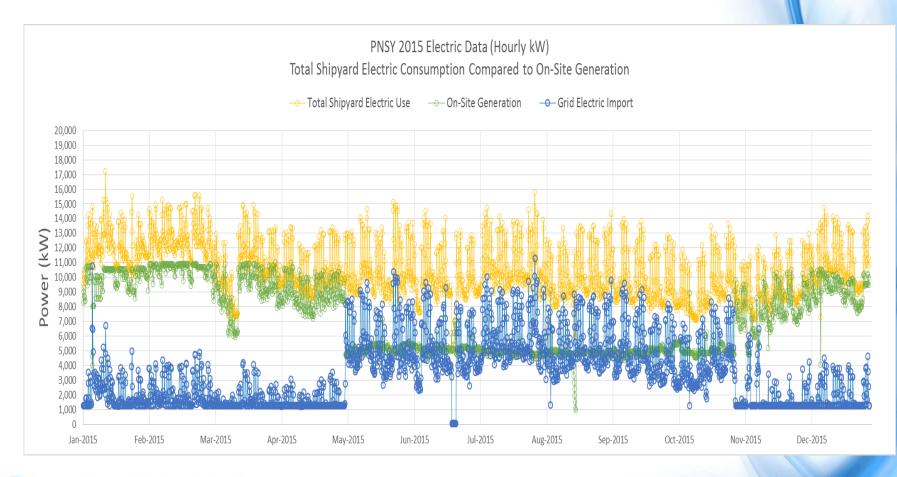
• Phase 1

- Energy Efficiency
- Boiler upgrades
- Distribution upgrades
- First Turbine


• Phase 2

- Second Turbine
- Diesel generators

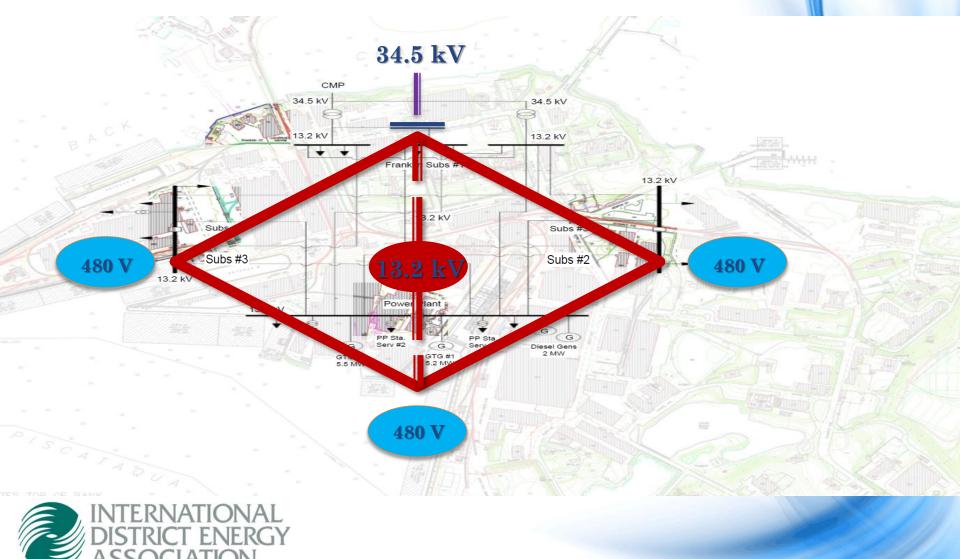
Phase 3 Water and sewer Condensate upgrades

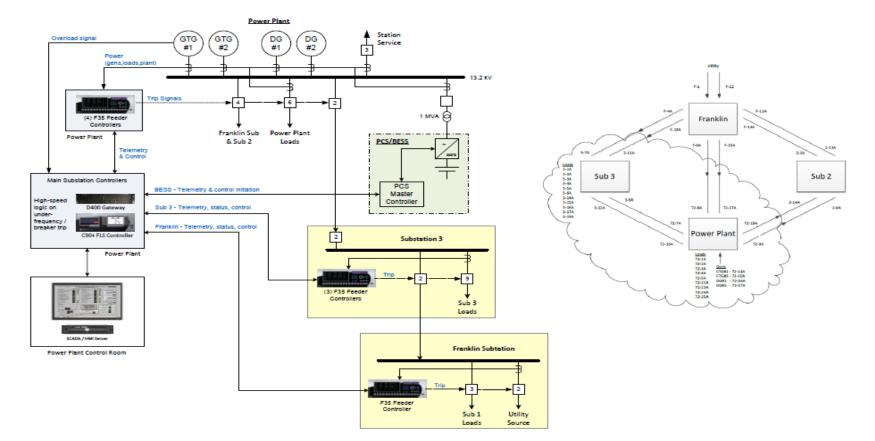

PNS Electric Supply

SHIPYARD ELECTRIC DEMAND (KW)

PROBLEM AND MICROGRID SOLUTION

- Problem:
 - Shipyard CTG are overloaded when utility grid fails; trip off on internal safeties
 - Not taking full advantage of significant on-site generation capacity for critical loads
 - Traditional load shedding schemes operate too slowly to save on-site generation.
- Solution:
 - Very high speed load shedding is required to maintain gas turbine generation stability under fault conditions.
 - Microgrid Controls System (MCS) with intelligent fast load shedding
- Major Benefits:
 - Enhanced mission security at Shipyard
 - Reduce substantial cost associated with lost production during power outages
 - Reduces preemptive self-generation dispatching and associated emissions


Project supported by grant from DoD Environmental Security Technology Certification Program



TECHNOLOGY/METHODOLOGY DESCRIPTION

Portsmouth Naval Shipyard Fast Load Shed System Data and Control Scheme

FAST LOAD SHED APPROACH -- EXAMPLE

Priority No.	Load Served	kW
0	Never Shed (e.g. Power Plant Aux., Air Comp.)	3,000
1	Dry Dock #1	2,000
2	Dry Dock #2	1,200
3	Bldg 174	300
4	Weld Shop	500
5	Engineering Support Bldg	700
24	Dry Dock #3 (Empty)	300
25	Substation 5	200
26	Bldg. 238	500
27	Substation 7	400
Total		13,000

FAST LOAD SHED RESPONSE TIME

#	Action	Response Time (mS)
1	Loss of Utility (LOU) detected by Relay F-35-1 at incoming utility breaker	Time "0"
2	F-35-1 sends LOU signal to C90	<1 ms
3	Calculations by C90 to determine which loads to shed; send System Island command to F-35 Relays controlling load breakers	<1 ms
4	System Island command received at farthest F-35 breakers through fiber optic switches	1.2 ms
5	Load Shed command issued by F-35 relays	2.0 ms
6	Breakers Open	32 ms
	Total Time from LOU detection to Load Shed	36.4 ms

PERFORMANCE VERIFICATION TESTING

Simulation Testing

- Disable Tripping on Critical Feeders Open Trip output on Test Switches
- Establish Summer and Winter Micro-grid Configurations
- Simulate a Loss of Power Initiation
- Outcome: Issues with load shed calculations. Corrections made and successfully retested.

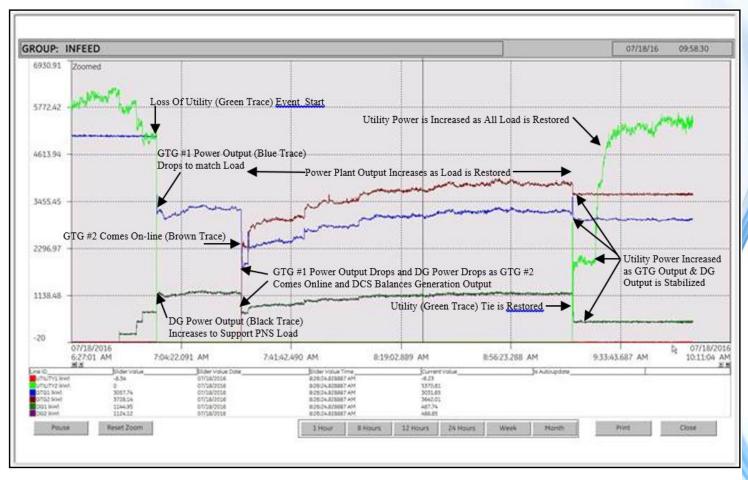
Live Test

- Pull the plug on the utility. Observe Operation. Restore Distribution System
- Outcome: Performance as expected Success !!
- New Question: What happens under actual fault conditions ??

PERFORMANCE DATA – LIVE EVENTS

• Event 1 – June 21, 2016

- Major failure of Air Gap Switch just outside Shipyard on Utility pole. Direct fault to ground on one phase.
- Utility Breaker Opened initiating FLS per design.
- CTG #2 Tripped on a ground fault protection . . .1 ms before Utility Breaker opened
- Shipyard went black


• Event 2 – July 18, 2016

- Loss of Utility, line to ground fault on utility side
- Back-up Diesel Generators were operating on scheduled monthly run at time of LOU
- FLS operated and CTG maintained generation Successful Event

PERFORMANCE DATA – LIVE EVENTS

HMI Trend Display - July 18, 2016 LoU Event

IMPORTANT ISSUES TO ADDRESS

- Identify Better Means for Initiating FLS
 - Fast enough to protect generating assets
 - Not so fast to produce nuisance trips
- o Ideas
 - Trigger based on Central Maine Power (CMP) Utility Recloser
 - Reverse power relay
 - Review / coordination of settings between utility breaker and CTG controls

AMERESCO Q.

CURRENT AND FUTURE PHASES

- Address tripping scheme
- Expand number of breakers under shed control
- Add more on-site generation to serve more loads
- Add substantial BESS to bridge to back-up diesel generators
- Potential use of expanded BESS capacity for participation in ISO-NE ancillary services market

Thank You Questions

