

Maximizing Microgrids The Top Issues Facing Development of the Ideal Microgrid

ID # IDEA2016-37

John M. Carroll

ADVANCING THE POWER OF ENERGY

Why Microgrids Now? Maximizing DER

Why Microgrids Now? Cybersecurity

Cyber Incidents Targeting Critical Infrastructure, 2012-14

Voluntarily Reported. Source: ICS-CERT Monitor, October-December 2012; October-December 2013; October-December 2014

Not Once in a Century, but Twice a Decade

Microgrid: Dept. of Energy Definition

"A group of interconnected loads and distributed energy resources with clearly defined electrical boundaries that acts as a single controllable entity with respect to the grid and can connect and disconnect from the grid to enable it to operate in both grid-connected or island mode."

figure 3. The eight key attributes of a future electricity system, defined by the DOE GTT.

Traditional Back-up Power Has Weaknesses

Why Microgrids?

- Centralized power vulnerability
- Increased deployment of DERs
- Power for autonomous, intelligent communities
- Power resiliency under all circumstances
- Existing and Emerging threats (weather, cyber, etc.)
- 24/7/365 support for emergency services
- Increased energy efficiency and cost reduction

Microgrids Improve Resilience & Flexibility

The Future of Microgrid Controls Design

GridMaster™ Microgrid Control System

Characteristics

- Intelligent distributed controls
- Peer-to-peer architecture; No master-slave
- Automatic self-healing and configuration
- Autonomous balancing of generation and loads

Advantages

- Works with existing infrastructure and new power generation sources
- Component vendor-agnostic
- Dynamic adaptation to resource behavior
- Graceful degradation
- Components capable of isolated operation
- Allows rapid inclusion of new technologies

Distributed control means no master-slave and no single point of failure

Effective Cybersecurity = Defense in Depth

- Constantly moving target: Defenses must continually evolve
- No fixed solutions: Only robust processes for deep, multi-layered defenses
- Baseline assumption: Firewalls and intrusion detection will be defeated
- Applicable frameworks:
 - NIST 800-82, Guide to Industrial Control System Security
 - NIST 800-53, Risk Management Framework; App I Security Controls, Enhancements, and Supplemental Guidance
 - DoDI 8500.2, DoD IA Certification and Accreditation Process
 - CNSSI 1253 App I, ICS Security Overlay

The control system must function with attackers inside

Cybersecurity Defense in Depth

Policies, Procedures, Training & Awareness

Encryption

Physical Security

Host Based Security

Perimeter Protection

Access Control

Monitoring, Forensics

Recovery, Patching

GridMaster is the only control system with Approval to Operate (ATO) and Type Accreditation from DoD

Sites Seeking Microgrids for Energy Assurance

Electric Utilities

Military

Municipalities

Airports & Mass Transit

Water Treatment

Medical & Laboratory

Commercial & Industrial Campuses

Islands & Developing World

Challenges Facing Microgrid Growth

- Microgrids are inherently complex
- Users want resilient power, but hesitate to build, own, operate
- Buyers don't have a microgrid mentality (yet)
- Limited experienced system integration vendors
- Business model definition for utilities & ownership
- Policy/regulatory restrictions

Take-Aways

- Communities require rapid response & automatic optimization
- Redundancy increases resiliency; Self-healing mitigates contingencies
- Optimizing energy sharing saves cost & improves efficiency (when grid connected & islanded)
- Distributed architecture provides highest degree of scalability & flexibility
- Controls technology must support multiple generation types
- Communication flexibility is key! Fiber, ethernet, wireless, PLC, etc.
- Cybersecurity? Investment in critical infrastructure...why not secure it?

The value add of backup generation is measured in risk mitigation

THANK YOU

John M. Carroll

John.Carroll@IPERC.com

www.IPERC.com

ADVANCING THE POWER OF ENERGY