

University of Virginia: Optimizing Chiller Efficiencies Via Innovative Tube Fouling Prevention

Presented by: Justin Callihan – UVA Michael Crocker – Innovas Technologies

February 2017

Defining the Problem

 Chillers represent >15% of building's energy use during warm months

• Vast majority of chillers are not operated at optimal efficiency

 >\$1.5 Billion wasted every year in USA due to chiller inefficiency

ATCS Technology: Multiple Dimensions of Value

- Chiller energy efficiency improves 5-15%
- Reduce or eliminate manual tube brushing & chemical cleaning
- Improves chiller plant safety
- Reduce GHG emissions and environmental impact

University of Virginia's Path To ATCS

Chiller Energy Consumption: ATCS vs. Annual Tube Cleaning

How Auto Tube Cleaning Systems (ATCS) Work

How Auto Tube Cleaning Systems (ATCS) Work

If Our True Goal is to Optimize Chiller Efficiency...

What Does 3% Efficiency Gain On Campus Chillers Mean to a University?

VA Hospital Case Study: Improved Chiller Energy Efficiency by 8%

VA Hospital Case Study: Increased Chiller Capacity by 30-100 Tons

VA Hospital Case Study: Project Savings Results

1200 Ton Centrifugal Chiller

ANNUAL PERFORMANCE RESULTS	Avg. Efficiency (Kw/Ton)	Energy Consumption (kW-hrs)	Energy Costs (\$)	
Without Tube Cleaning System	0.33	1,768,300	\$141,465	
With Tube Cleaning System	0.30	1,627,000	\$130,160	The
Annual Savings (% Savings)	0.03 (10%)	141,300 (8%)	\$11,304 (8%)	

15-YR PERFORMANCE RESULTS	Energy Consumption (kW-hrs)	GHG Emissions (tons)	Energy Costs (\$)	
Without Tube Cleaning System	26,524,500	20,160	\$2,122,000	anti-
With Tube Cleaning System	24,405,000	18,550	\$1,952,000	
Savings	2,119,500	1,610	\$170,000	A J

Case Study: Oregon Hospital

"...We have not cleaned the chiller tubes in four years since the tube cleaning system was installed. With ATCS approach temps run between .5 and 2 degrees throughout the year...Before ATCS with constant cleaning we had double digit approach temps. Chillers needed several acid cleanings as well as brushed." --Pat Lamb, Central Utility Plant Director

	Annual Savings		Total Project Savings To Date		
E	Electricity Cost Savings	\$62,000/yr	Electricity Cost Savings	\$210,000	
	Energy Conserved	765,000 kW-hrs/yr	Energy Conserved	2.6 Million kW-hrs	
	GHG Emission Reduction	582 tons/yr	GHG Emission Reduction	2,000 tons	
	Equivalent Cars Removed	103/yr	Equivalent Cars Removed	350	
	Equivalent Trees Planted	13,000/yr	Equivalent Trees Planted	46,000	

Key ATCS Technology Application Concepts

- Supplements water treatment
- Applies to chiller condenser or evaporator
- Upper temperature limit of 280 F
- Effective coarse straining of inlet cooling water is critical

Questions?

Justin Callihan, UVA jhc4h@virginia.edu

Michael Crocker, Innovas Technologies mcrocker@innovastechnologies.com