PSU Burrowes Rd Steam Manhole Repair

Presented by: Ron Pristash, Penn State University Andy Price, Affiliated Engineers, Inc.

International District Energy Association Campus Energy 2017 February 20-24, 2017

Penn State University

- West Campus Steam Plant
 - 338,000 pph steam production
 - 5.2 MW electric production
- East Campus Steam Plant
 - 317,000 pph steam production
 - 7.0 MW electric production
- Distributed Central Chilled Water System
 - Three plants produce 18,800 tons chilled water

Pennsylvania State University Btu per Square Feet and Total Square Feet

PSU Steam Distribution

PSU Steam Tunnels

Low Pressure Steam System

- Superheated steam is produced at 250 psig, 540°F
 - Turbine driven equipment
 - Backpressure turbines
 - Pressure reducing valves
- High pressure steam distributed at 150 psig, (400°F)
- Low pressure steam distributed at 13 psig, saturation (230°F)
 - Multiple design conditions used over history of University
 - Distribution system includes pressure reducing stations in manholes and tunnel zones. Pressure reducing stations do not include desuperheaters.

High Temperature Event

High Temperature Event

- During routine preventative maintenance, steam crew observed damage to piping systems in manholes along Burrowes Road including
 - Concrete manhole damage
 - Broken concrete pedestals
 - Sheered steel anchors
 - Bent all-thread
 - Disconnected steel supports

High Temperature Event

- High pressure is supplied along Burrowes Rd to manhole 138 where it is reduced in pressure to supplement the low pressure system.
- Plant trend data shows high steam temperatures
- High Pressure Desuperheater discharge temperatures in excess of 500°F
- High to Low Desuperheater discharge temperatures in excess of 450°F

Existing System

System Failures

THERMAL EXPANSION OF PIPE PENN STATE UNIVERSITY

		EXPANSION	
PIPING SEGMENT	DISTANCE (FT)	DESIGN TEMP (240°F STEAM) (IN)	HIGH TEMP (500°F STEAM) (IN)
PLANT TO MH-226	139	2.1	5.3
MH-226 TO MH 227	171	2.6	6.5
MH-227 TO ANCHOR	118	1.8	4.5
ANCHOR TO MH-228	128	1.9	4.8
MH-228 TO ANCHOR	60	0.9	2.3
ANCHOR TO MH-229	118	1.8	4.7
MH-229 TO ANCHOR	78	1.2	3.0
ANCHOR TO MH-230	86	1.3	3.3
MH-230 TO MH-231	361	5.4	13.7
MH-231 TO MH-232	141	2.1	5.3

Manholes

- 227
- 229
- 230
- 231
- 238
- Tunnel Zone S

Spalling at MH entrances

- Expansion Joints reached limit stops
- Additional force exceeded concrete pedestal design

Slip expansion joints 'bottomed out'

• Pipe 'sprang' to new location following anchor failure

Large concrete pedestal sheared at location of embeds

• Bent, then sheared ³/₄" embeds

• Pipe moved laterally after anchor failure

• Event 'tested' designs of piping systems further away from Power Plant

• Elbow replaced with tee in field without calculating new pipe stress

• Computerized pipe stress analysis *below* allowable stress with elbow, *above* allowable stress with tee

Tunnel Section S

Additional expansion

Design Standards

Design Standards

- While normally saturated, due to the fact that the LPS is a byproduct of the co-generation steam turbines, this system could experience a temperature excursion. Temperature of the steam can reach 450°F if the desuperheater fails. As such, all LPS piping in the tunnels shall be designed for expansion associated with an excursion temperature of 450°F. Cast iron, malleable iron, brass and bronze components are prohibited.
- HPS shall be designed for expansion associated with a design temperature of 500°F.

Expansion Compensation – Natural Flexibility

• Loops, z-bends, L-bends – used with direct buried or conduit piping

Expansion Compensation – Slip Joints

• Select with sufficient travel,

i.e. do not 'over engineer' a selection

Expansion Compensation

- Double Slip Type Expansion Joints should not be used in tunnel or manholes.
- Preferred method is two single slip expansion joints with anchored spool piece
 - Order slips without reducers
 - Good location for building take-off and drip legs

Expansion Compensation – Slip Joints

Pipe must be aligned with slip joint for proper performance

Guide pipe according to manufacturer's recommendations

Forces on Anchors

- Anchor must withstand pressure force, friction force in the expansion joint, and friction force from contact between pipe and pipe supports and guides
- Force on Anchor \rightarrow $F_A = F_P + F_C + F_S$ Pressure force, F_P Force of compression, F_C Friction force from supports, F_S

Forces on Anchors

- Anchor design must consider warm up and isolation conditions
 - i.e. forces may not be equal and opposite

Questions?