## Path to Innovative & Successful Low-carbon DES Solutions IDEA 2014

Moving Community Energy Forward June 9<sup>th</sup>, 2014 Seattle

INTEGRAL GROUP Vladimir Mikler, MSc, PEng, LEED AP - Principa

## OBJECTIVE & OVERVIEW

#### **DEFINING A PATH TO INNOVATIVE & SUCCESSFUL LOW-CARBON DES**

- KEY REQUIREMENTS:
  - Technical
  - $\circ$  Economical
  - Social/ Political
- CONSIDERATION OF ENERGY QUALITY (EXERGY)
- IDENTIFYING AN OPTIMAL SITE SPECIFIC DES CONFIGURATION
  - End-use Energy Demand Side
  - Energy Source and Technology
  - Energy Distribution Network

#### EXAMPLES OF INNOVATIVE DES CONFIGURATIONS





• KEY OBJECTIVES + THEIR HIERARCHY = DES STRATEGY

Reliability Sustainability Carbon Emissions Fuel Security Environmental ImpactResiliency Efficiency **Total Cost of Service** Location Redundancy Self Sufficiency **Business** Case Scalability



## **KEY REQUIREMENT #1: TECHNICAL**

#### • END-USE ENERGY DEMAND SIDE:

- Diverse & Adequate Demand
- Existing vs. New End-Use
- Demand use Temperatures!

#### • ENERGY SOURCE & TECHNOLOGY SIDE:

- Waste Thermal and Low-Carbon Renewable Energy sources available on site
- Matching and Efficient Energy Conversion Technology

#### DISTRIBUTION NETWORK:

- Link between the End-use demand and Energy Source
- Distribution Network Temperature Level!





## KEY REQUIREMENT #1 TECHNICAL

#### FINDING THE OPTIMAL MATCH: ENERGY QUALITY (EXERGY)



Revolutionary Engineering

## KEY REQUIREMENT #2: ECONOMICAL

#### **BUSINESS CASE**

- Define parameters of a viable business case:
- ROI/ IRR/ Cash flow...... "Total Cost of Energy (TCE)"
- "Marginal TCE" over Business as Usual (BAU)
- Cost of conventional energy sources from the grid
- Cost of borrowing capital
- Targeted payback period
- Capital incentives for Low-carbon systems
- ???



INTEGRAL

Revolutionary Engineering

## KEY REQUIREMENT #3: SOCIAL/POLITICAL/REGULATORY

#### **MUST ADDRESS PUBLIC PERCEPTION CONCERNS**

- Emissions & Air pollution, Odor, Noise, Health...
- "Not in my Backyard!"
- Biomass, WTE, Wind power....

#### **MEET REGULATORY REQUIREMENTS**

- Regional, Municipal...
- Public Utility regulations

#### **STAKEHOLDERS ENGAGEMENT**

Proactive stakeholders communication and engagement
plan





## DES PLANNING: END-USE ENERGY DEMAND SIDE

#### **EVALUATE END-USE ENERGY DEMAND SIDE OPPORTUNITIES AND LIMITATIONS**

#### **EXISTING BUILDINGS**

- Systems requiring high supply temperature level
- Can it be lowered?
- Keep "as is" or upgrade building level systems?
- Can it be reconfigured to achieve "temperature cascading" and maximum "dT"?

#### **NEW BUILDINGS**

- Design with low-temperature systems
- Minimized the energy requirements





## DES PLANNING: ENERGY SOURCE SIDE

#### EVALUATE LOCAL ENERGY SOURCE OPPORTUNITIES AND LIMITATIONS

#### **LOW-GRADE:**

- On-site waste heat recovery
- Sewer waste heat recovery
- Geo-exchange
- On-site renewables: solar thermal

#### **HIGH GRADE:**

- Fossil fuels (natural gas, petroleum, coal)
- Grid electricity
- On-site renewables: solar PV, wind power
- Non-traditional combustible fuels (biomass, solid waste, biogas)





## DES PLANNING: TECHNOLOGIES & NETWORKS

#### DEVELOP OPTIMAL DES TYPE AND NETWORK CONFIGURATION, ENERGY SOURCES AND TECHNOLOGIES

#### **KEY CONSIDERATIONS:**

- Thermal/ Electric/ Co-generation/ Tri-generation
- Heating Only vs. Heating & Cooling
- High-Temperature vs. Ambient Temperature
- Cascading Temperature Levels
- Centralized vs. Distributed Energy Source
- Energy Sources and their combinations
- Energy Conversion technologies and their combinations





## DES PLANNING: DOWNTOWN VANCOUVER EXAMPLE



INTEGRAL Revolutionary Engineering

## VANCOUVER DOWNTOWN "AMBIENT LOOP"

- Conversion of the existing DFPS into Ambient Loop
- Energy recovery between cooling dominant commercial buildings and heating dominant residential buildings
- Distributed "lowgrade/low-carbon" energy sources



Revolutionary Engineering

### VANCOUVER DFPS – "AMBIENT LOOP" CONVERSION CONCEPT



## VANCOUVER AMBIENT LOOP THERMAL PERFORMANCE OF PHASE 1



## YVR & SEA ISLAND LOW CARBON DES CONCEPT



## YVR EXISTING ENERGY DEMAND



imagine | accelerate | perform | sustain

Revolutionary Engineering

## YVR & SEA ISLAND DES CONSIDERED DES TECHNOLOGIES

#### **BIOMASS TRI-GENERATION**



Heathrow Airport T2 10MW Biomass Cogeneration Plant

#### **WASTE-TO-ENERGY**



"Batch Oxidization System" by WTEC

### **ABSORPTION CHILLERS**



Absorption Chillers – University of Lund DES, Sweden





## DES CONCEPT FOR YVR & SEA ISLAND: "OPTIMAL" CONCEPT





## YVR & SEA ISLAND "OPTIMAL" CONCEPT DES ENERGY DEMAND



Revolutionary Engineering

## YVR & SEA ISLAND "OPTIMAL" DES CONCEPT



## RICHMOND - MINORU PARK DISTRICT ENERGY STRATEGY

#### HYBRID ON-SITE DISTRICT ENERGY STRATEGY



- Minoru Ice Rink Heat Rejection Recovery, Solar Thermal, and Geo-exchange
- Peaking and backup heating by local Waste Biomass or Natural gas boilers
- Minoru Ice Rink and Solar Thermal are utilised first
- Geo-exchange sized to meet remaining heat demand

INTEGRAL Revolutionary Engineering

## RICHMOND - MINORU PARK DISTRICT ENERGY STRATEGY



- Hybrid system
  - Minoru Arena
  - Solar Thermal
  - Geo-exchange
  - Nat gas boiler
- System meets 100% of Minoru Park heating demand
- Geo-exchange field: 330 boreholes 12,000m<sup>2</sup>

INTEGRAL Revolutionary Engineering

## RICHMOND - MINORU PARK + CARRERA DISTRICT ENERGY STRATEGY



- Hybrid system
  - Minoru Arena
  - Solar Thermal
  - Geo-exchange
  - Nat gas boiler
- System meets 100% of Minoru Park + Carrera heating demand
- Geo-exchange field: 450 boreholes 15,300m<sup>2</sup>

Revolutionary Engineering

## FINANCIAL ANALYSIS BUSINESS CASE PRO-FORMA: 20 YEAR DEBT PAYOFF



## FINANCIAL ANALYSIS BUSINESS CASE PRO-FORMA: 30 YEAR DEBT PAYOFF



# **Questions**?

## Thank You

THE REAL PROPERTY AND INCOME.