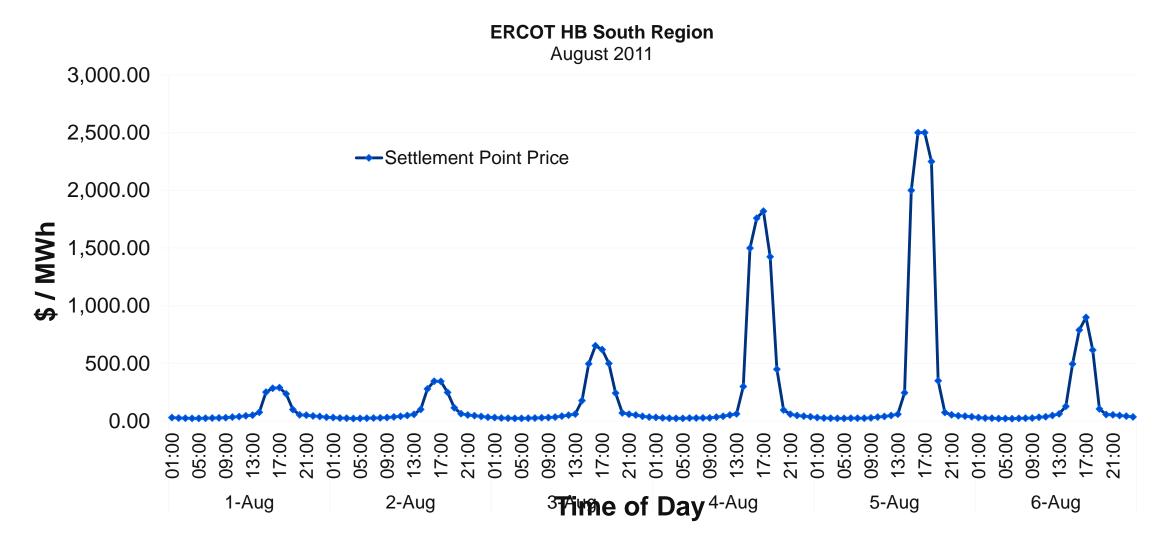
Energy Storage a Need for the Grid (and for Microgrids); an Opportunity for District Energy

> John S. Andrepont, President The Cool Solutions Company

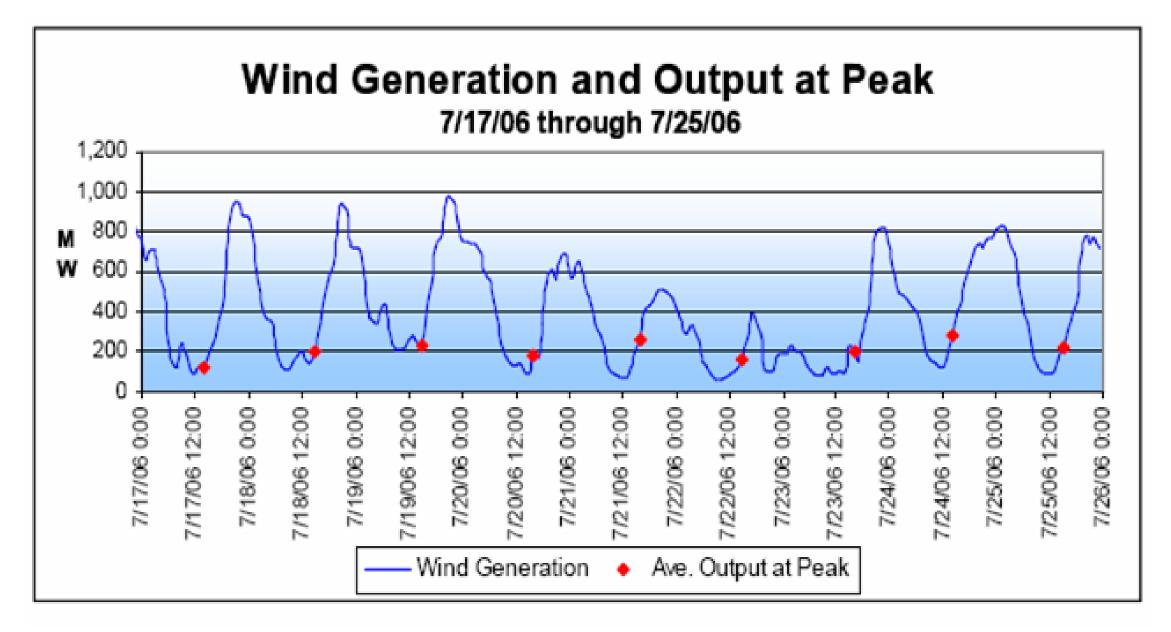
International District Energy Association (IDEA) Annual Conference Scottsdale, Arizona – June 28, 2017

Outline

- Introduction
- Energy Storage Options
- Example: Batteries vs. Chilled Water (CHW) Thermal Energy Storage (TES)
- Widespread Use of CHW TES by Repeat Owners
- Ancillary Benefits from CHW TES
 - Emergency Cooling for Mission Critical Facilities (MCF)
 - Combined Heat & Power (CHP)
 - Turbine Inlet Cooling (TIC)
 - Dual-Use as TES + Fire Protection
- Conclusions and Recommendations


Impact of Renewable Power

- Renewable Portfolio Standards => increased Wind & Solar power
 - Intermittent and often out-of-phase with demand
 - Coal + Nuclear + Wind power often exceeds nighttime demand
 - Nighttime power trades <u>negative</u> at times, e.g.:
 - In TX, as low as negative \$0.10/kWh
 - In NE, as low as negative \$0.20/kWh
- Energy Storage is increasingly critical; one can consider:
 - Batteries, Pumped Hydro, Compressed Air, Flywheels, SMES, Fuel Cells . . .


But large CHW TES often excels over all those in terms of:

maturity, safety, siting, permitting, schedule, lifetime, efficiency, cap\$

While Grid Demand Varies from 100 to 50% of Peak, Power Value Varies from +\$2.50/kWh to -\$0.10/kWh

Wind Power Produces Only 20% at Peak Demand Times

Types of Energy Storage

- Mature storage technologies:
 - Pumped Hydro-electric (PH) Energy Storage
 - Traditional Batteries (Lead-Acid, Sodium-Sulfur)
- <u>Developing storage technologies</u>:
 - Advanced Electro-Chemical Batteries (Li-Ion, others)
 - Compressed Air Energy Storage (CAES)
 - Mechanical Flywheel Energy Storage
 - Superconducting Magnetic Energy Storage (SMES)
- <u>An often overlooked option Thermal Energy Storage (TES)</u>:
 - Hot TES (Hot Water, Hot Oil, Molten Salt, Rock, Concrete)
 - Cool TES (Ice, Phase Change Material, Chilled Water, Low Temp Fluid)

Chilled Water (CHW) TES

- An insulated tank , full of water at all times.
- Cool, dense CHW Supply in lower zone, at ~40 °F; warm, less dense CHW Return in upper zone; a with narrow "thermocline" (temperature gradient) in between.
- TES charging, off-peak (nighttime): CHWR pumped from top of tank, cooled in chillers, returned to bottom of tank; thermocline rises in tank, until tank is 100% cool water.
- TES discharging, on-peak (daytime): CHWS pumped from bottom of tank, meets cooling loads, returned to top of tank; thermocline falls in tank, until tank is 100% warm water.

No moving parts, except pumps and valves.

Key Characteristics to Consider for Energy Storage

- Technical development status; readiness for reliable & economical application
- Safety issues or concerns
- Ease of siting (considering both technical & environmental concerns)
- Schedule for permitting & installation
- Life expectancy and life cycle costs
- Round-trip energy efficiency
- Initial unit capital cost (\$/kWh)

But characteristics differ for each individual storage technology.

Comparison of Energy Storage Options

Typical

Characteristics (Units) **Maturity Status Safety Issues Flexibility of Siting Ease of Permitting Overall Schedule** (years) **Expected Lifetime** (years) **Round-trip Efficiency (%) Unit Capital Cost**

- Low	(Ş/kWh)		
- High	(\$/kWh)		

Pump	Trad'l	Adv'd	Fly-	Comp	CHW
<u>Hydro</u>	<u>Batt's</u>	<u>Batt's</u>	<u>wheel</u>	<u>Air</u>	<u>TES</u>
excell	excell	dev'l	dev'l	dev'l	excellent
med	low	yes	yes	med	low
v. low	v. high	v. high	v. high	v. low	high
diffic	simple	simple	med	diffic	simple
10+	1-2	1-2	1-2	3-5+	1-2
40+	7-15	7-10	20	40+	40+
70-85	80-90	85-90	90	70-80	near 100
310	500	350	7800	200	80
380	750	500	13760	???	200

CHW TES at University of Nebraska-Lincoln (UNL)

Two CHW TES,
each providing:
1) energy storage, plus
2) chilled water (CHW)
peaking capacity

UNL East Campus

Storing 16,326 ton-hrs (12 MWh); and shifting 4,000 tons (3 MW) UNL City Campus

Storing 52,000 ton-hrs (39 MWh); and shifting 8,333 tons (6.25 MW)

Example: 39 MWh at University of Nebraska-Lincoln

Storage Element

Peak cooling discharge Peak electric discharge Duration at peak disch. Net storage (thermal) Net storage (electric) Storage unit cap cost **Storage capital cost** Full system cap cost Full system unit cap cost

Chilled Water (CHW) Lithium-Ion **Advanced Batteries Thermal Energy Storage (TES)** (actual, 2017) (hypothetical) not applicable 8,333 tons 6.25 MW equivalent 6.25 MW 6.24 hrs 6.24 hrs not applicable 52,000 ton-hrs 39.0 MWh equivalent 39.0 MWh \$350/kWh \$100/ton-hr \$13.65 M \$5.20 M (38% of batteries) \$11.7 M (43% of batteries) \$27.3 M \$225/kWh (43% of batteries) \$700/kWh

Example: 39 MWh at University of Nebraska-Lincoln

	Lithium-Ion	Chilled Water (CHW)
	Advanced Batteries	Thermal Energy Storage (TES)
Storage System	(hypothetical)	<u>(actual, 2017)</u>
Full system cap cost	\$27.3 M	\$11.7 M (43% of batteries)
Full system unit cap cost	\$700/kWh	\$225/kWh (43% of batteries)
Additional Chiller Plant		
Necessary capacity	4,016 tons	TES <u>already</u> provides 8,333 tons
Unit cap cost	\$2,900/ton	not applicable
Installed cap cost	\$11.6 M	zero
Total capital cost	\$38.9 M	\$11.7 M (30% of batteries)
Storage life expectancy	7-10 years	40+ years
Round-trip energy efficiency	85-90%	near 100%

Energy Efficiency of CHW TES

- TES inefficiencies: 1) heat gain, and 2) pumping.
- TES <u>efficiencies</u>: 1) cooler nighttime condensing temperatures, and
 2) avoided low-load operation of chillers & auxiliaries.
- **CHW TES** round-trip energy efficiency is near 100%.
- Some examples even show net energy savings with TES:
 - State Farm data processing campus in IL
 - 89,600 ton-hrs CHW TES
 - annual kWh/ton-hr reduced by 3% (by modeling)
 - Texas Instruments manufacturing facility in TX
 - 24,500 ton-hrs CHW TES
 - annual kWh/ton-hr reduced by 12% (by measurement)

Some Owners with Multiple TES Installations

3M Corporation(3) Alamo Colleges (3) Austin Energy (3) Boeing (2) California State U system (19) State of California (5) Del Mar College (2) Disney Theme Parks (3) District Energy St. Paul (2) Dominion Energy (for TIC, 5) DuPont (for MCF back-up, **5**) Enwave (5) Ford Motor Co. (5)

General Motors (5) Honeywell (3) IBM (2) Lincoln Electric System (TIC, 2) Lockheed Martin (3) Los Angeles County, CA (3) NASA & National Labs (6) N. Harris/Montgomery Coll. (2) NRG Energy (4) Princeton U (2) Riverside County, CA (4) San Jacinto Jr. College (3) San Joaquin Delta College (2)

Saudi Aramco (2) Saudi Electricity Co. (for TIC, 3) Siemens (3) Stanford U (5) State Farm Insurance (5) Tabreed (16) Texas Instruments (3) TNB - Universiti Tenaga (3) Toyota Motor Mfg N. Amer. (5) U of California system (8) U of Nebraska (2) U of Texas system (7) USAF/Army/CIA/FDA/NSA/VA (15)

Emergency Cooling for MCFs

- Back-up for Mission Critical Facilities (e.g. data centers)
 - Apple, AT&T, Bank of America, California ISO, Citibank,
 - Covidien, DuPont Fabros, eBay, Equinix, HSBC, MCI,
 - Nationwide, Princeton U, Target, US Bank, and many others.
 - Capital One
 - data center in VA
 - CHW TES
 - 900 ton-hrs
 - 180,000 gals
 - 1,500 tons x 36 minutes

TES Flattens Load - Better for CHP

- Flattened cooling & electric profiles aid CHP economics
 - Chicago's Metro Pier & Expo Authority convention district (3 MW)
 - Climaespaco mixed-use district energy in Lisbon, Portugal (8 MW)
 - Princeton U campus (15 MW)
 - TECO medical
 - district (45 MW)
 - CHW TES
 - 64,300 ton-hrs
 - 8.8 million gals
 - 10 MW / 45 MWh load shift

Turbine Inlet Cooling (TIC)

- TIC with TES for maximizing hot weather power output of CTs.
 - Calpine, Chicago MPEA, Climaespaco, Princeton U,
 - Reedy Creek Energy Services (Disney World), TECO,
 - Dominion Energy (five TIC in PA & VA with 80 MW from CHW TES).
 - Saudi Electricity Company
 - CHW TES
 - 193,000 ton-hrs
 - 7.9 million gals
 - 48 MW / 288 MWh TES load shift
 - 180 MW extra power from TIC
 - That extra power under \$300/kW

Dual-use: TES and Fire Protection

- CHW TES doubles as fire protection.
 - Abbott Laboratories (IL), ARCO (TX), Chrysler Motors (MI),
 - GM (OK & MI), Phoenix Newspapers (AZ), Pratt & Whitney (CT),
 - Shell Development (TX), State Farm Insurance (GA & IL).
 - 3M Corporation
 campus in MN
 - CHW TES
 - 32,000 ton-hrs
 - 4.1 million gals
 - 5 MW / 24 MWh load shift

Conclusions and Recommendations

- The need for Energy Storage grows with more wind & solar power.
- Many storage options; but large-scale **CHW TES** offers advantages.
- In 39 MWh example, CHW TES (vs batteries) is 50-70% lower \$/kWh; plus it has higher efficiency (near 100%), and longer life (40+ yrs).
- 30 yrs of successful applications; many owners with multiple TES.
- Additional benefits for MCFs, CHP, TIC, and fire protection. Grids and microgrids with large cooling needs (air-conditioning, process cooling, or Turbine Inlet Cooling) should consider incorporating CHW TES, as it likely offers lowest \$/kWh of storage and lowest \$/ton of cooling. District Energy's aggregated thermal loads uniquely represent a prime opportunity to employ TES, rather than batteries or other ES.

Questions / Discussion ?

Or for a copy of this presentation, contact:

John S. Andrepont **The Cool Solutions Company** CoolSolutionsCo@aol.com tel: 1-630-353-9690

