

Trials and Victories: Designing and Operating a Second TES tank for UT's CHW system

Campus Energy 2017 A Sustainable Future February 20-24, 2017

Mike Manoucheri, PE Jeff Easton, PE

- Introduction
- Motivations
- Operational Notes
- Design Considerations
- Start-up / Commissioning
- **Current Status**
- ► Next Steps

INTRODUCTION UNIVERSITY OF TEXAS AT AUSTIN

- Main Campus
 - Founded 1883
 - 70,000 students and faculty
 - 431 acres, 20 million square feet, 150+ buildings
 - 50 states, 126 countries represented
- Pickle Research Campus
 - Applied Research Labs
 - Nuclear Engineering

BURNS MEDONNELL.

Advanced Computing Center

Image Courtesy: The University of Texas

INTRODUCTION DELL MEDICAL SCHOOL

- Phase 1
 - \$800 million new construction
 - 1.1 million square feet
 - Level 1 trauma hospital
- Fast-tracked
 - Bond passed November 2012
 - First students Fall 2016
- Long-term

BURNS MEDONNELL.

2 million additional square feet

The University of Texas at Austin **Dell Medical School**

Health Learning Building, Image Courtesy: The University of Texas

INTRODUCTION

CS7 & HWP1 PROJECTS

- Chilling Station #7
 - Cooling
 - ▶ 15,000 tons VFD chiller, 5,000 tons future
 - ▶ 600 tons Heat Pump Chiller, 1,800 tons future
 - ► TES 5.5 million gallon
 - Heating

- ▶ 37 MMBtu HW Boiler, 12 MMBtu future
- ▶ 10 MMBtu Heat Pump Chiller, 30 MMBtu future
- Hot Water Plant #1
 - Back-up steam-fired capacity
 - Embedded in med district
 - ► 40 MMBtu HX's

MOTIVATIONS THERMAL ENERGY STORAGE

- Med District impact on CHP system
 - Generating Capacity/Redundancy
 - Best Efficiency
- Independent Operation from CS7
 - Charge from System
- Maintenance Flexibility
- Improved Reliability
- ► TES-1 experience
 - Design improvements
 - Focus on start-up and CX

OPERATIONAL NOTES FOOD FOR THOUGHT

- General
 - Talking about lessons-learned...not enough
 - Doing anything at 3pm on Friday is a bad idea
 - Trust...but verify
 - Ensure new buildings are FULLY full and bled before opening them into system
 - Challenges starting CX while still under construction
 - High quality valves / materials
 - Hydrolazing
 - Piping, yes
 - Valves, no

DESIGN CONSIDERATIONS

EXISTING SYSTEM CHALLENGES

- Dynamic System Pressure Gradient
 - Lower water elevation than TES-1
 - Geographically remote from make-up
- Operational Independence
 - Dedicated PLC, pumping
- Dual Tank Operation Capability
- Limited Expansion stiff system
- "Downhill" loads = offset supply pressure limit

DESIGN CONSIDERATIONS HARDWARE

- Thermal Storage Tank
 - Types Considered
 - Siting Factors
 - ► Aesthetic, Safety, Height
 - View Corridor
- Pumping / Piping
 - Arrangements
 - Wide range of operation
 - HDPE Surge Considerations
- Instrumentation

- Inline mag meters on inlet/outlet
- N+1 level sensors
- Staggered temp strings

DESIGN CONSIDERATIONS SOFTWARE

- Tank Level Simulations
- Dedicated TES PLC
- Relational Control Approach
- Specific Control Valve Sequence
 - Ratchet/control approach
 - Controlling to CV directly
- Multiple interlocks and safeties
- Control Valves

BURNS MEDONNELL

- Valve CV as control variable
- Catalog CV curves versus reality

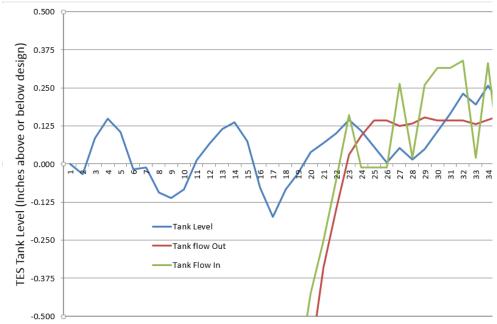


Image Courtesy: The Hartman Company

START-UP / CX IT'S ALIVE!

- Building side load materialization
 - Dependent on weather & timing
 - Load estimates during construction unreliable
 - Building engineers can be over conservative
- ► TES System Considerations
 - Opportunity to test chillers while TES charging
 - Discharge requires testing against campus
 - <u>Detailed</u> Planning with Operations
 - Calibrate level instruments while filling!
 - Despite safeties and careful planning...
 - Overpressure event

BURNS MEDONNELL.

START-UP / CX

- TES System
 - Tank Insulation
 - Tight Level Margin
 - ► Low Pressure Event
- BOP System

BURNS MEDONNELL.

- FRP Basin
- Software Simulations
- Trend data during start-up
- Custom Chiller Controllers

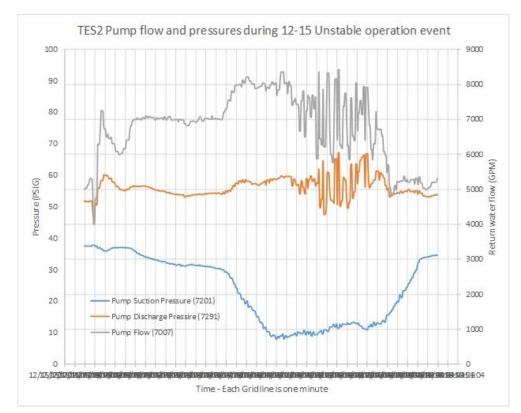
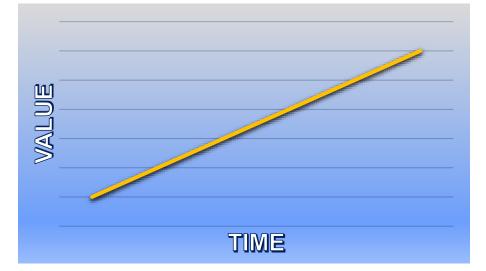


Image Courtesy: The Hartman Company

CURRENT STATUS READY TO SERVE

- Dell Medical School
 - 3 initial buildings occupied
- CHW Plant Operational
- Boiler & Heat Pump Chiller
 - Pending CX
 - Load size and stability issues
 - Competing with building-side
 HPC
- TES System Testing
 - Control valve CV issues
 resolved
 - · Level issues revolved
 - Dual Tank Operation Achieved



NEXT STEPS MAKE IT BETTER

- Complete Functional CX
- Improve dual tank discharge control
- Utility Master Plan update
 - Distribution Improvements
 - Increase CS7 utilization
- Optimize CHW
- Fully Optimize Entire System
 - Power
 - Steam
 - CHW

BURNS MEDONNELL.

• TES-1, 2

BURNS MCONNELL.

CONTACT

Michael Manoucheri, PE Utilities & Energy Management Associate Director – Power Plants p: 512-471-8818 e: Michael.Manoucheri@austin.utexas.edu

Jeff Easton, PE, CEM

Project Manager p: 303-474-2294 e: jaeaston@burnsmcd.com