Intelligent Energy and Water Data Management for a Smart, Resilient & Sustainable Campus

Automation Systems and Energy Conservation -Mark Grant, Schneider Electric

Goal of the Workshop

> Show you what you can do with a control system to help measure energy without spending dollars

- > Better understand automation support for energy management
- > Preservation of not just \$\$ but also equipment
- > Look behind the curtain at the automation structure
- > See how energy can be presented at the automation level and at the corporate level

POWERING

Business Value - Profitability

> The ability to produce valuable products for the lowest possible cost as energy costs rise

44%

Energy costs on average as percent of profit

Expected savings from Energy Performance

Source: Schneider best practices, US Department of Energy Metering Guide, Feb 2006

Causes of Energy Overconsumption

A Holistic Approach

and its continuous application

Provide clear visibility on your energy consumption and cost to bring awareness across the business

Understand Sustainability regulation and how that can be achieved for your Industry

Understand Energy Supply markets and ensure you have the correct source and best price for energy now and in the future

> POWERING BIG IDEAS TOGETHER.

Energy Blocks to Consider

Energy blocks are used to collect/create energy values for output of energy consumed
 Some blocks are interconnected

- > Boiler Energy steam energy
- > Air Compressor Energy compress air vol/electric consumed & compress air press/electric consumed
- > Liquid Energy energy consumed/produced by liquid

> Electric Energy – instantaneous energy rate & energy consumed for an electrical device

> Process Energy – energy/production unit (inputs from gas, electrical, solid energy object)

- > CO2 Global Warming Potential (GWP) per fuel type
- > Solid Fuel Energy energy content of the solid fuel
- > Aggregrated Energy collected energy from above blocks

Control Blocks - Embedded

> Things to validate regarding energy

- > Calculations should be simple pre-configured
- > Consistent and tested and validated
- > Displays should be mandatory
- > The block and the calculations are TVDA tested, validated, documented, and architected
- > The math should be correct

Measuring Energy Real Time

- > Process can be in control & out of control at same time
- > Treat energy as another IO point
- > Provides info on health of the process & assets
- > Energy should be measured as:
 - > Produced
 - > Consumed
 - > Unitized
 - > Aggregated with reset

Energy Intensity = The energy consumed to produce a unit of product

How the Blocks Can Work

				PROCENERGY					
Parameter	Туре	Description		EnableDFB	EgyIntensity		Parameter	Туре	Description
EnableDFB	BOOL	Enables the DFB.		Eporav	TargetEnergy		EnergyIntensity	REAL	The energy consumed to produce a unit of product.
Energy	REAL	The energy parameter coming from an accumulator which is recording the overall instantaneous energy			raigetEnergy		TargetEnergy	REAL	This is the energy that is modeled by user.
		being utilized for the production parameter.		ProdValue	TotalEgy	<u> </u>	TotalEnergy	REAL	Total energy consumed for that shift. Gets reset as
ProdValue REAL	REAL	The instantaneous production value. This can come from a weight transmitter of a reactor or any transmitter which is monitoring a production value.]—	Trigger	Deviation —				soon as the shift is changed through the trigger input.
							Deviation	ARRAY [04] OF INT	This is an array, which contains the last 5 deviations
Tribuer	BOOL	The trigger input is to be a pulsed input to be given	1	ProcActive	DeviationSum	<u> </u>			from the last o shifts.
	2002	after the shift is over. This will reset the total energy					DeviationSum	REAL	Sum of last 5 deviations.
		and will give the energy deviation for that particular shift from the modeled energy.		- Fail	Health		Health	BOOL	Indicates the health of the block. • Health = 0: Energy of the block is not
ProcActive	BOOL	Takes the health of the Process that is being	1						aggregated.
		an input of 1 and will calculate the energy values.	<u> </u>	ProcEnergy ST-		<u> </u>			 health = 1: Energy of the block is aggregated.
Fail	BOOL	Any detected failure that is linked to the block. This input will come from a CONDSUM Block]	ProcEnergy_CFG-	—ProcEnergy_CFG				
	-					1			

Energy Intensity = The energy consumed to produce a unit of product

Parameter	Туре	Description
EnableDFB	BOOL	Enables the DFB.
OutputPres	REAL	The pressure of the superheated steam output.
OutputTemp	REAL	The temperature of the superheated steam output.
MassFlowRateS	REAL	The mass flow rate of the output superheated steam is required to calculate the output energy of this steam generated.
Fail	BOOL	Any detected failure that is linked to this block. This input will come from a CONDSUM block.

BOILER

 EnableDFB	InstEgy	P
 OutputPres	ThermalOutput	 I
 OutputTemp	TotalEgy	 Т
 MassFlowRate S	LastEgySample	 T
 Fail	Health	 H.
 Data_ST	——— Data_ST	
 Boiler_ST	——— Boiler_ST	
 Boiler_CFG	Boiler_CFG	

InstEgy	<u> </u>	Parameter	Туре	Description
ThermalOutput		InstEgy	REAL	Instantaneous energy rate in kW. In order to be in line with the ODVA standards, the instantaneous energy value should not exceed 32767 kW.
rotai⊏gy		ThermalOutput	ARRAY [04] OF INT	Instantaneous energy in local units.
LastEgySample		TotalEgy	ARRAY [04] OF INT	Total energy consumed in Wh.
		LastEgySample	ARRAY [04] OF INT	Energy consumed in the last sample time in Wh.
Health		Health	BOOL	Indicates the health of the block: • Health = 0: Energy of the block not aggregated. • Health = 1: Energy of the block is aggregated.
——Data_ST				

Boiler						
Boiler - Boiler Object						
Energy Measurements	Energy Measurements Producer					
Total Energy Total Energy	a Mega Kilo Wh					
Sampled Energy 000 000	000 000 074					
Thermal Energy	Thermal Energy					
Tera Giga Mega Kilo KCal Thermal Equivalent 000 000 000 007						
Reset						
Reset Odometer	1					

Make the most of your energy[™]

©2015 Schneider Electric. All Rights Reserved. All trademarks are owned by Schneider Electric Industries SAS or its affiliated companies or their respective owners.

