

Texas A&M Utility Master Plan Implementation

Jim Riley, CEM Justin Grissom, PE

CampusEnergy2016: The Changing Landscape

February 8-12, 2016

INTRODUCTION

Texas A&M University System Overview

Campus Size

BURNS MEDONNELL.

- 58,000 students
- Over 24 million GSF served
- Increasing to 28 million GSF within three years

Thermal systems divided between east/west campus

Four utility plants - CUP, SUP1, SUP2, SUP3 Capacities

- 50 MW power generation
 - ► 34 MW gas turbine
 - 16 MW with two steam turbines
- 60,000 tons of cooling (both electric & steam)
- 440,000 pph of steam
- 450 million Btu/hr of heating hot water

Energy Use Intensity (Energy Consumption per GSF)

Texas A&M University, College Station, Texas

Campus Size vs Energy Consumption

Texas A&M University, College Station, Texas

UTILITY MASTER PLANNING

	2012	YEAR 5	YEAR 30	AVG GROWTH/YR
AREA (MGSF)	22.5	24.6 (9%)	35.2 (56%)	1.5%
CHW Peak (ktons)	37.6	41.5 (10%)	64 (70%)	1.7%
HHW (MMBtu)	222	242 (9%)	372 (68%)	1.6%
DHW (GPM)	295	324 (10%)	581 (97%)	2.2%
Electricity (MW)	70	80 (14.3%)	100 (43%)	1.4%

Contributed to 43% energy reduction per GSF achieved since 2002 and \$200 million in cost avoidance

Improved safety and reliability

BURNS MEDONNELL

Reduced capital and operating cost with proactive program

Delayed savings are <u>LOST</u> savings

MAJOR PRODUCTION EQUIPMENT UPGRADES

CUP	CAPACITY	EQUIPMENT			
POWER	50 MW	GTG1, STG2, STG4			
STEAM	440 mlb/hr	B1, B2, B12			
CHW	24,700 tons	CHLR3, 4, 5, 6, 7, 8, 9, 10			
SUP1	CAPACITY	EQUIPMENT			
HHW	1,000 BHP	B104, 105, 106, 107, 108, 109			
CHW	10,000 tons	CHLR103, 104, 105, 106			
SUP2	CAPACITY	EQUIPMENT			
SUP2 HHW	CAPACITY 500 BHP	EQUIPMENT B201, 202, 203, 204, 205, 206, 207, 208			
SUP2 HHW CHW	CAPACITY 500 BHP 11,000 tons 24,000 ton hours	EQUIPMENT B201, 202, 203, 204, 205, 206, 207, 208 CHLR201, 202, 204, 205, 206, 207 Thermal Energy Storage			
SUP2 HHW CHW SUP3	CAPACITY 500 BHP 11,000 tons 24,000 ton hours CAPACITY	EQUIPMENT B201, 202, 203, 204, 205, 206, 207, 208 CHLR201, 202, 204, 205, 206, 207 Thermal Energy Storage EQUIPMENT			
SUP2 HHW CHW SUP3 HHW	CAPACITY 500 BHP 11,000 tons 24,000 ton hours CAPACITY 1,000 BHP	EQUIPMENT B201, 202, 203, 204, 205, 206, 207, 208 CHLR201, 202, 204, 205, 206, 207 Thermal Energy Storage EQUIPMENT B303, 304, 305, 306, 307, 308, 309			

MASTER PLANNING BENEFITS

Improved safety

Higher reliability

Improved operating efficiency

- Significant cost avoidance
- Capital expenditure offset
- Energy consumption reduction
- Reduced GHG emissions

Better management of capital investment

Operational flexibility

BURNS MEDONNELL

Enhanced economic dispatch capability

- Respond promptly to changes in market conditions
- Achieve demand reduction and greater cost avoidance

TAMU 2012 MASTER PLAN

\$32 MM in LCC savings

151,000 MTCO2e annual carbon reduction

MASTER PLANNING STEPS

Identify obvious needs and priorities Hire capable engineering firm Document capabilities and limitations Define and document specific needs Complete engineering and financial analysis Document upgrades and investment required Identify funding source (well-defined cost recovery model) Complete thorough justification Develop implementation plan Obtain necessary approvals Proceed with design and project implementation Effectively measure and report results achieved

Centrifugal Chiller replacements – efficiency improvements

Tag	Original Install Year	Original Drive/Type	Original Nominal Capacity (Tons)	Original Efficiency, Full Load	New Drive/Type	New Nominal Capacity (Tons)	New Efficiency, Full Load NPLV
CHLR007	1971	STM/CNTRF	3,350	4.71 COP	ELEC/CNTRF	3,350	0.61 kW/ton 0.39 kW/ton
CHLR010	1978	ELEC/CNTRF	3,350	0.76 kW/ton	ELEC/CNTRF	3,150	0.60 kW/ton 0.35 kW/ton
CHLR103	1979	ELEC/CNTRF	2,000	0.76 kW/ton	ELEC/CNTRF	2,500	0.58 kW/ton 0.36 kW/ton
CHLR201	1984	ELEC/CNTRF	1,334	0.61 kW/ton	ELEC/CNTRF	2,500	0.61 kW/ton 0.37 kW/ton
CHLR301	1989	ELEC/CNTRF	1,100	0.62 kW/ton	ELEC/CNTRF	2,500	0.61 kW/ton 0.37 kW/ton
CHLR302	1989	ELEC/CNTRF	1,100	0.62 kW/ton	ELEC/CNTRF	2,500	0.61 kW/ton 0.37 kW/ton

ES & ENERGY

Heat Recovery Chiller addition - savings and benefits

Serve simultaneous heating and cooling loads

Increased electrical consumption, reduced NG and water consumption

Increased operational flexibility and redundancy

12/22-12/26 performance

- Heat recovery chiller was only HHW
 production at SUP2
- \$8,000 cost avoidance over 5 days

Condensing Boiler addition - savings and benefits

6 MMBtu HHW Boilers

Offsets existing noncondensing boiler loads; less efficient boilers used only for peaking 3 months out of the year, as needed

BURNS MEDONNELL.

🔶 Fulton Efficiency @ 100% Input 📕 Fulton Efficiency @ 20% Input 🔺 Actual Fulton Efficiencies 🌒 Actual Conventional Boilers Efficiencies

 HHW Return Temperatures (% of total annual hours)

 <130 °F 75.6%</td>
 <125 °F 67.3%</td>
 <120 °F 23.5%</td>

Thermal Energy Storage Tank projected savings and benefits

Capital offset (avoid chiller installation) Operational flexibility

Economic Dispatch

BURNS MEDONNELL.

- Shift load from peak to off-peak
- Respond to 4CP demand periods
- \$250k/year cost estimated cost avoidance

West Campus Chilled Water System Efficiency Comparison

13

NEXT STEPS

Utility Master Planning

BURNS MEDONNELL.

Renew and update plan every five years

- Ensure alignment with institution and business mission
- Develop utility and energy design standards
- Include safety, reliability, efficiency and environmental goals
- Document 5-year and 20-year plan
- Include following components:
 - campus growth and development projections
 - all production and distribution systems
 - existing system age and condition

AIM UTILITIES & ENERGY SERVICES TEXAS A&M UNIVERSITY

