
University of Rochester

Integration of 8,000 Additional Tons with an Existing Chilled



University of Rochester

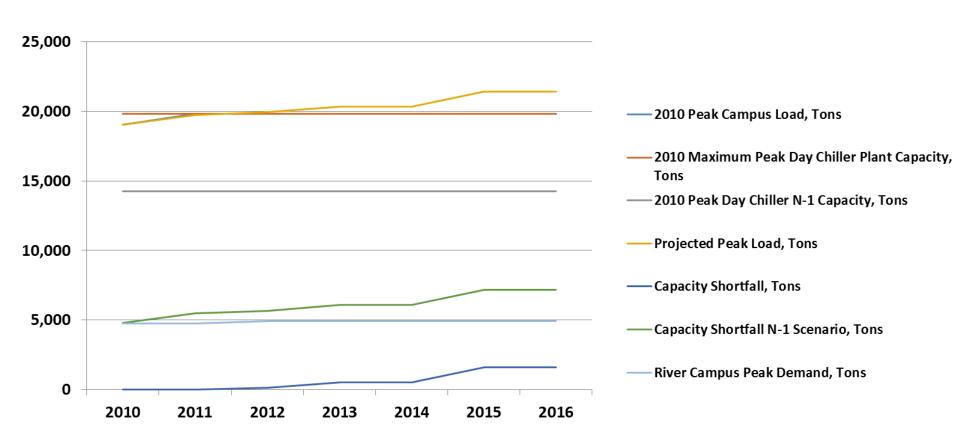
- Located in Rochester, NY
- Founded in 1854, Private University
- 158 Buildings, over 12 MM gross square feet of building space
- 10,500 students (graduate and undergraduate)
- 800 bed hospital, regional trauma center
- 7,177,104 gross square feet on central chilled water system
- Steam and medium temperature hot water systems, 25 MW cogen
- \$54 MM Annual Utilities Budget

District Cooling History at Rochester

- 1924 Central Boiler Plant Built (Steam Only)
- 1967 to 1972 Central Chilled Water Plant Added with Four (4) Steam Driven Chillers & River Water Condensing System - 15,000 Tons Capacity
- 1999 Added 6,300 Ton Steam Driven Chiller #5 and Dedicated Cooling Towers
- 2005 Chilled Water Master Plan
- 2008 Middle Campus Chiller Plant (MCCP) - 4,000 Tons of Chiller Capacity

2008 MCCP Design Criteria

- Locate Plant Closer to Medical Center and Hospital due to Growing Cooling Loads
- Two 4,160 Volt, Electric Driven
 Chillers Selected for Diversity and Reliability
 - One Chiller Provided with Medium Voltage VFD
- Roof Top Cooling Towers to Reduce Dependence on River Water for Condenser Cooling
- Dedicated 34.5 KV Electric Service from Utility for Redundancy
- Designed to Allow for Future Expansion



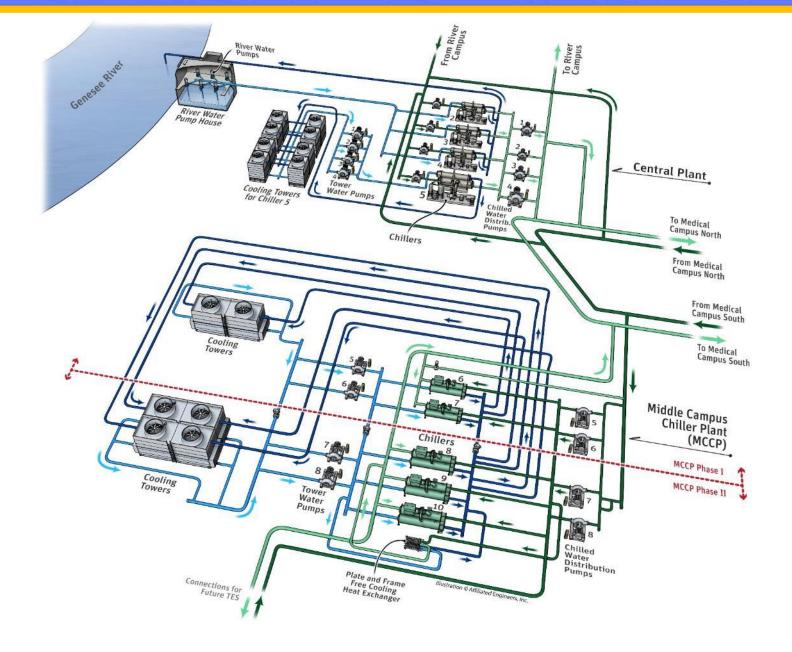
2011 Chilled Water Peak Forecast

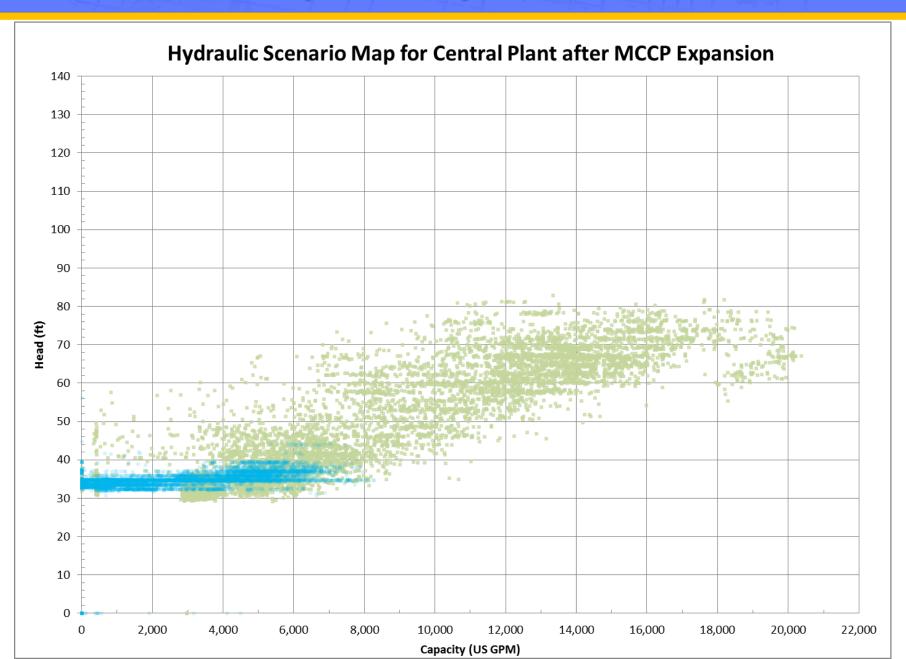
In August 2011 the Largest Chiller Drive Fails (6,300 Tons) Resulting in Curtailments and Rental Chillers Being Brought on Site:

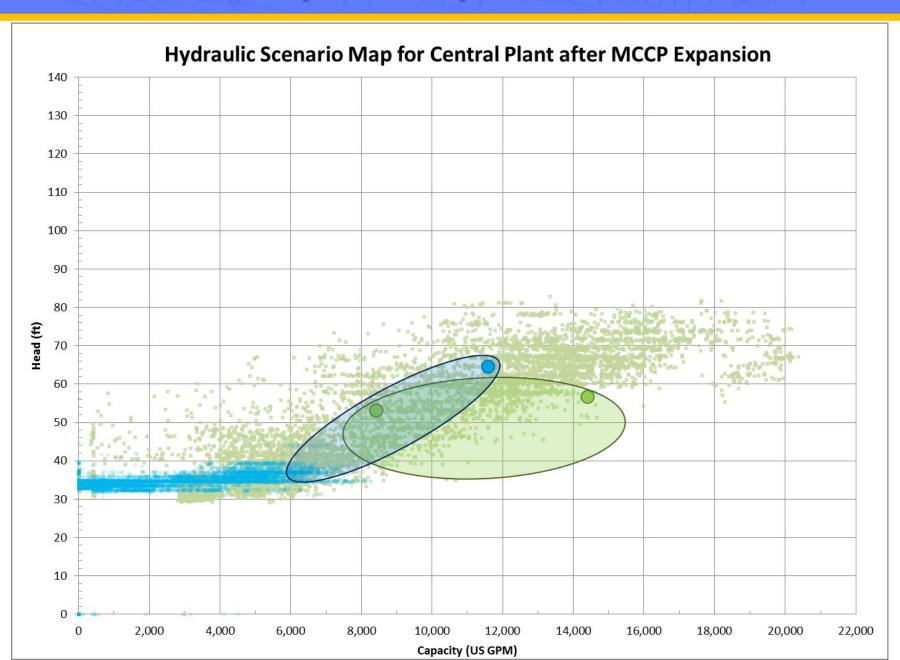
	2011	2012	2013	2014	2015
2010 Summer Peak Campus Load (Tons)	19,045	19,045	19,045	19,045	19,045
2010 Maximum Peak Day Chiller Plant Capacity	19,830	19,830	19,830	19,830	19,830
2010 Peak Day Chiller N-1 Capacity	14,265	14,265	14,265	14,265	14,265
Projected Peak Load	19,045	19,735	19,942	20,335	21,413
Saunders Research Building Added Demand		690	690	690	690
Warner School of Education Building Added Demand			207	207	207
Wilmot Cancer Center Expansion Added Demand				393	393
Golisano Pediatric Hospital Demand					1,078
Capacity Shortfall @ Peak	0	0	111	504	504
Capacity Shortfall N-1 Scenario	4,780	5,470	5,676	6,069	7,148

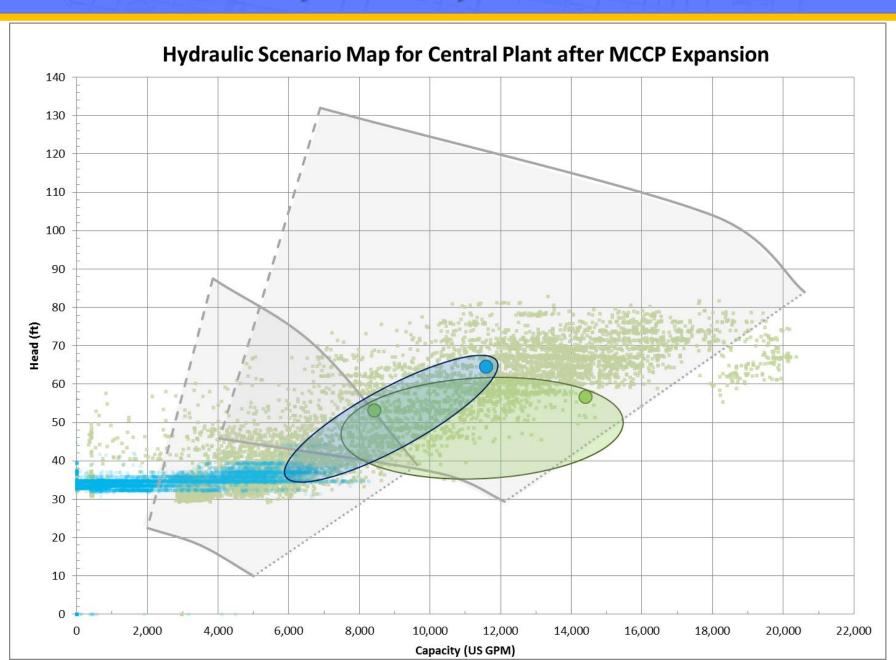
UR 2011 Capacity Shortfall Diagram

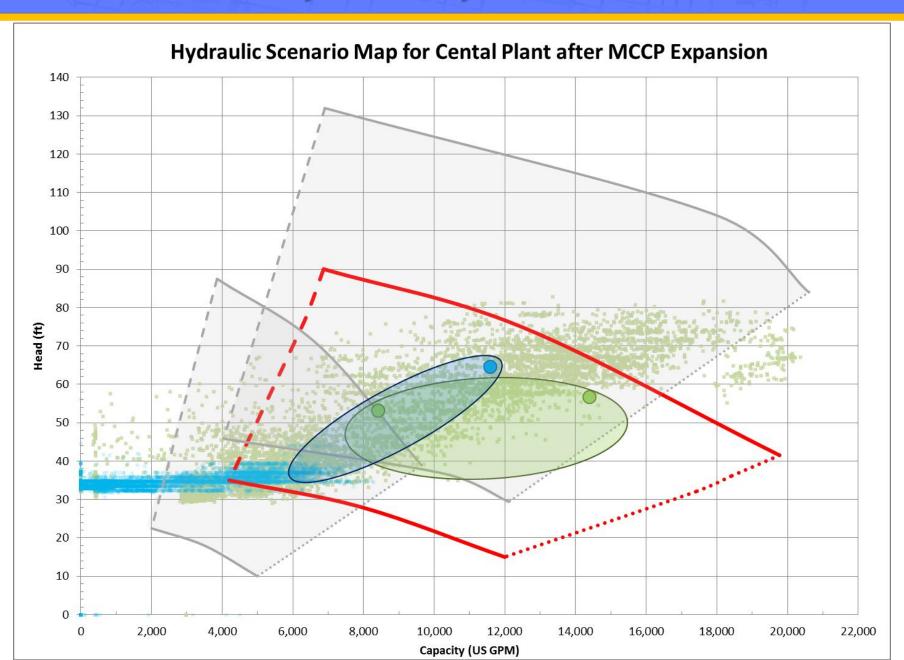
Chilled Water System Upgrades

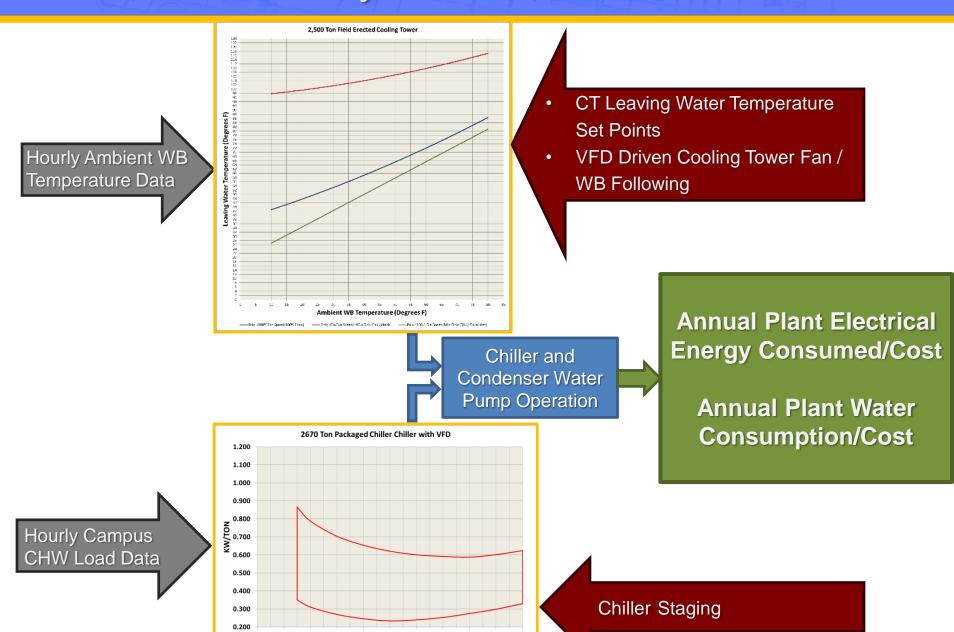

- Upgrade 1971 Steam Driven
 Chillers # 2 and 3 to R-134A,
 Repower Steam Turbine Drives,
 Increase Nameplate Capacity to 5,200 Tons each
- Replace River Water Pump House Intake Screens, Electrical Transformers and Switches
- New 70 MVA Electrical Substation (New 11.5 kV loop feeder service to Mid Campus Chiller Plant)
- Replace Original Central Plant Chilled Water Distribution Pumps and Add 480 Volt VSDs
- Add 8,000 Tons of Additional Electric Chillers at Mid Campus Plant for N+1 Reliability

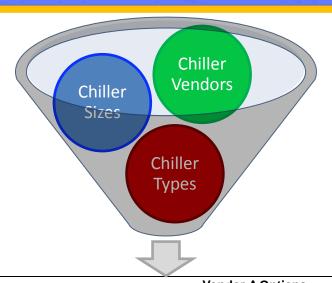





2012 Master Plan Budget

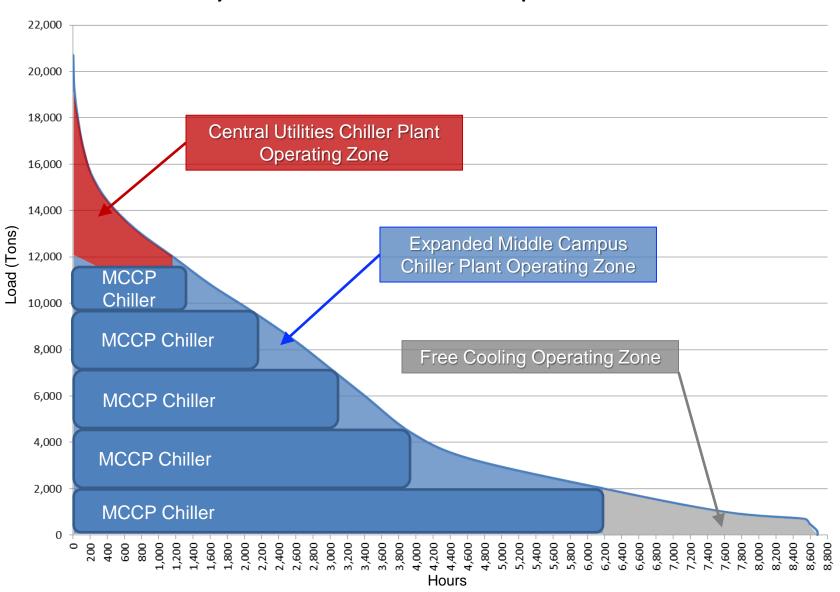

- 2012 & 2014 Upgraded Old R-12 Steam Driven Chillers # 3 and 4 to R-134A, Increase Capacity to 5,200 Tons each - \$6.6 MM
- 2013 Replaced Original 1970's Central Plant Chilled Water Distribution Pumps and Add VSDs -\$1 MM
- 2013 Replaced River Water Pump House Intake Screens, New Electrical Transformers and Switches \$1.1 MM
- 2014 New 70 MVA Electric Substation \$23MM
- 2015 Added 8,000 Tons of Additional Electric Chillers at Mid Campus Plant - \$16 MM
- New Central Plant Cooling Tower \$5 MM (Future)
- New Thermal Storage Tank \$5 MM (Future)
- Upgrade 1971 Chiller #4 Steam Turbine Drive \$3.3 MM (Future)





Chiller Plant Analysis – Chilled Water Model

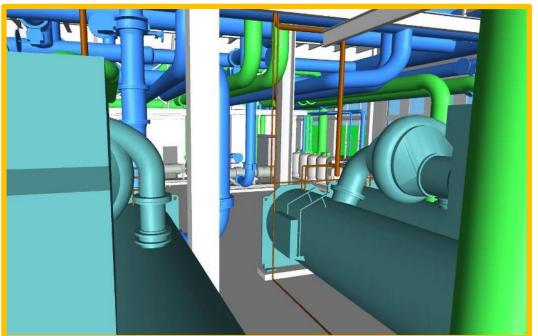
Percentage of Full Load


Chiller Plant Analysis - Options Analysis

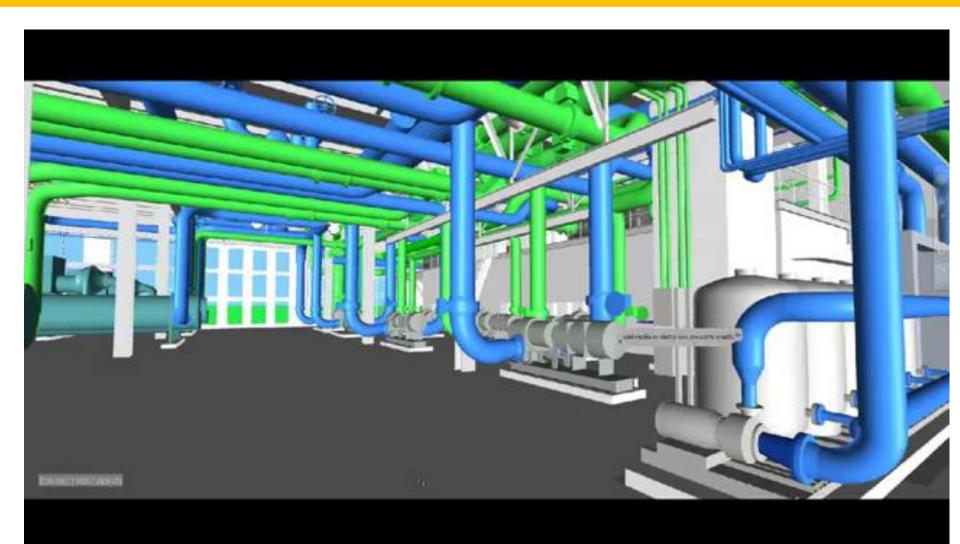
Criteria	Vendor A Options									
Criteria	1	2	3	4	4A	4B	5	5A	6	
								One 5,600 Ton		
							One 5,600 Ton	PackagedChiller		
							Packaged	with Starter and	Four 2,000 Ton	
Option Description			Three 2,670 Ton	Two 4,000 Ton	Two 4,000 Ton	Two 5,00 Ton	Chiller with	One 2,400 Ton	Series	
		Three 2,670 Ton	Chillers - One	Packaged	Chillers with	Packaged		Chiller VFD and	Counterflow	
	Chillers with		Starter/Two with	Chillers with	Starters and X-	Chillers With	2400 Ton Chiller	X-CH-6 VFD	Chillers with	
	Starters	VFDs	VFDs	Starters	CH-6 Retrofit	Starters	wth VFD	Retrofit	VFDs	
Number of Chillers	3	3	3	2	2	2	2	2	2(4)	
Total New Chiller Tons	8,010	8,010	8,010	8,000	8,000	10,000	8,000	8,000	8,000	
Total New Chiller Tons on VFD	0	8,010	5,340	0	0	0	2,400	2,400	8,000	
Total Plant Firm Capacity	9,340	9,340	9,340	8,000	8,000	9,000	6,400	6,400	10,000	
Total MCCP Tons on VFD	2,000	10,010	7,340	2,000	4,000	2,000	4,400	6,400	10,000	
Total MCCP Tons	12,010	12,010	12,010	12,000	12,000	14,000	12,000	12,000	12,000	
Relative First Cost - Mech.	\$ 8,600,000	\$ 9,600,000	\$ 9,200,000	\$ 9,200,000	\$ 9,500,000	\$ 10,600,000	\$ 9,200,000	\$ 9,500,000	\$ 10,700,000	
Relative First Cost - Elec. Opt A	\$1,500,000	\$1,500,000	\$1,500,000	\$1,600,000	\$1,600,000	\$1,500,000	\$1,500,000	\$1,500,000	\$1,900,000	
Total Relative First Cost	\$ 10,100,000	\$ 11,100,000	\$ 10,700,000	\$ 10,800,000	\$ 11,100,000	\$ 12,100,000	\$ 10,700,000	\$ 11,000,000	\$ 12,600,000	
Chiller Fit	Fair	Fair	Fair	Good	Good	Good	Good	Good	Poor	
Option Relative Cost \$/Ton	\$ 1,261	\$ 1,386	\$ 1,336	\$ 1,350	\$ 1,388	\$ 1,210	\$ 1,338	\$ 1,375	\$ 1,575	
Annual Energy Cost	\$ 2,161,932	\$ 1,964,037	\$ 1,992,602	\$ 2,218,769	\$ 2,062,671	\$ 2,446,770	\$ 2,056,630	\$ 2,026,942	\$ 1,909,791	
25 YR Net Present Cost	\$46,704,229	\$44,895,737	\$44,827,765	\$48,707,908	\$46,583,337	\$54,207,751	\$46,085,754	\$45,906,199	\$46,292,261	

Chiller Plant Analysis - Options Analysis

University of Rochester Chilled Water Campus Load Duration Curve


Measured Data – Comparison to System Model


- Measured Hourly Data Started July 2015
- Model Normally Predicts Chiller kW/ton 2 4% Higher than Actual
 - Some conservativism in vendor provided chiller efficiencies
 - More variance with VFD driven Chillers
- Average Accuracy of Chiller operating Curves +/- 2%


MCCP Summer and Fa	all Operation	(July 15 to C	ct 31) - Meas	sured VS Mo	deled					
	Chiller #8		Chiller #9		Chiller #10					
	Measured	Modeled	Measured	Modeled	Measured	Modeled				
kW/ton	0.477	0.501	0.562	0.573	0.423	0.478				
Deviation (kW/ton)	-0.024		-0.011		-0.055					
Deviation (%)	-5.0%		-2.0%		-13.0%					
MCCP Peak Summertime Operation (Peak Day - July 28th) - Measured VS Modeled										
	Chiller #8		Chiller #9		Chiller #10					
	Measured	Modeled	Measured	Modeled	Measured	Modeled				
kW/ton			0.591	0.580	0.472	0.503				
Deviation (kW/ton)	N/A Not Operating		0.011		-0.031					
Deviation (%)			1.9%		-6.6%					

Additional Features at MCCP

- Plate and Frame Heat Exchanger for Winter Free Cooling - 2,000 Tons
 - Dedicated Cooling Tower Basins (4 of 6) for Free Cooling Temperatures
 - CU Chillers Free Cooling with Vapor Migration
 - Allows for Maintenance to be Performed on CU
- Chlorine Dioxide Unit for Chilled Water System Disinfection
- Side Stream Sand Filters for Tower Water
- Added Piping Provisions for Future Chilled Water Thermal Storage (24" Dia. Supply & Return)


Additional Features at MCCP

Lessons Learned

- Owner Direct Procurement of New Chillers, Pumps, Drives, Electrical Switchgear saved Time and Money
- Allow for Controls System Flexibility in Dispatching Chillers
- Integration of a new Primary Pump Plant with an Existing Primary/Secondary Pump Plant
- With Primary Pumping Controls
 Sequencing to Bring on Additional Chilled
 Water Pumps as Load/Flow Increases
- Time Frame for New Piping Chemical Cleaning and Flushing was extensive, Contractor not prepared
- Take the Required Time to Fully Commission Plant
- New 10 MVA, 11.5 KV Transformer Failed on Initial Start Up, Possible Harmonic Transients, Retrofitted with R.C. Snubber

What is Next?

- NYSERDA Rebate
 - Super Efficient Chiller Bonus
 - \$605,000 Rebate Delivered
 - Additional \$404,000 Expected after M&V
- Chilled Water Energy Dashboard Graphics
- Upgrade Chiller 4 Steam Turbine Drive
 & Controls
- New Cooling Tower at Central Plant
- Thermal Energy Storage System
 - Electrical Demand Charges Increasing

Questions?

