

Differential Pressure Control

Hydronic College by IMI Hydronic Engineering Inc.

Why differential pressure control?

- Control valves work with improved authority, therefore their performance is improved
- Reducing pump head and keep high controllability in the system
- Control valves are pressure relieved, so low force (= lower cost) actuators can be used
- Noise in control valves is reduced or removed completely
- Based on stabilized differential pressure across the circuit, the flow is limited.
- Circuits is a pressure independent modules. Which means:
 - That the changes in other parts of the system do not affect the circuit
 - Large plants can be balanced module by module independently
 - New modules can be added to the system without rebalancing

Differential pressure variations

Control loop

Control valve authority

$$\beta = \frac{\Delta P_{\rm Control\ valve\ fully open\ and\ design flow}}{\Delta P_{\rm Control\ valve\ fully shut}}$$

The authority (β) formulates how much the differential pressure builds up on the control orifice of a control valve when it is closing___

Its value indicates how effectively the control valve can reduce the flow while it is closing.

2-way control valve authority (variable flow)

Constant as soon as the valve Cv is chosen (Δp_V) .

$$\beta = \frac{\Delta P_{\text{Control valve fullyopen and designflow}}}{\Delta P_{\text{Control valve fully shut}}}$$

Variable, depends on flows in the piping,

thus also on the opening of all the other control valves.

In a <u>variable</u> flow distribution, the authority of a control valve is <u>variable</u>.

Distortion of valve characteristic

The lower the authority, the larger the Δp variations on the control valve, the larger distortion of the valve characteristic

Control valve with Equal-percentage characteristic (EQM)

Variable authority of 2-way control valves

Authority in design conditions:

$$\beta \approx 5/(5+7) = 0.42$$

Authority at half-load:

$$\beta = 5/(5+7+0.96*21) = 0.15!$$

 $0.96*21 \text{ ft} + 0.96*7 \text{ ft} \approx 26.9 \text{ ft in}$ excess in the valve at half-load

5 ft in the valve

7 ft in the circuit

VSP does not allow to compensate for all local Dp variations in the plant

Control valve oversizing

Control valves are commercially available with Cv values increasing according to the Reynard series:

Cv:..... 2.0 3.0 4.0 5.0 10 20 30

Flow to a FCU of 29 gpm, Δp 5 psi and 2 psi in connecting pipes. the commercially available control valves create a design ΔpV

Cv:	11	20	10	
∆pV [psi]	7	2.12	8.49	NOTHING in
β_{design}	0.5	0.23	0.55	between

Conclusion:

of:

Control valves are generally oversized.

Effect of Dp variations on controlled heat output

∆p variations distort the characteristic of the control valve ⇒ the nonlinear characteristic of the terminal unit is no longer compensated

Noise

Engineering GREAT Solutions \

Closing of control valves

According to its design, each valve has a required actuation close-off force or torque that depends on:

- Tension of the return spring, if any,
- Friction with o-rings and seals,
- Differential pressure applied on the plug.

Each control valve/actuator combination has a certain close-off differential pressure

Туре	Conn.		Kv	Cv	Kv	Cv	MZ18L / 18A / 18B 180 N (40 lbf.) Max. ΔPc		MZ10T 96 N (22 lbf.) Max. ΔPc	
	DN						kPa	psi	kPa	psi
VZ22	15	1/2"	0.16	0.19			1600	232	600	87
VZ22	15	1/2"	0.25	0.29			1600	232	600	87
VZ22	15	1/2"	0.40	0.47			1600	232	600	87
VZ22	15	1/2"	0.63	0.74			1600	232	600	87
VZ22	15	1/2"	1.00	1.17			1200	174	180	26
VZ22	15	1/2"	1.6	1.9			1200	174	180	26
VZ22	20	34"	2.5	2.9			400	58	50 ¹)	7.3
VZ22	20	34"	4.0	4.7			400	758,-	50 1)	7.3
	8		A-AB:		B-AB:					
VZ32	15	1/2"	0.25	0.29	0.16	0.19	800	116	500	73
V722	15	14"	0.40	0.47	0.25	0.20	900	110	F00	72

Hydronic condition nr 2

The differential pressure across control valves must not vary too much.

 Δp coil

Control valve authority

To acheive good control it's recomended to fulfill two rules on authority:

- 1. Size the control valve with a Cv with $\beta_{design} \ge 0.5$
- 2. Ensure that $\beta_{min} \ge 0.25$

Improved control by correct control valve sizing

IDEA

Ensure design authority of at least 0.5 and minimum on 0.25 in all control valves in the worst conditions.

$$\beta_{design} = \frac{\Delta P_{\text{Controlval vefully open and design flow}}}{\Delta H}$$

$$eta_{\min} = rac{\Delta P_{\text{Control valve fully open and designflow}}{H}$$

Rule no 1:

For obtaining a <u>design authority of 0.5</u>:

 Δp in control valve must be $\geq 0.5 \times \Delta H$

Since Δp circuit = 7 ft, Δp in control valve must be \geq 7 ft

Final pump head = 40 + 7 = 47 ft $\beta_{design} = 0.5$ but $\beta_{min} = 0.15$

Rule no 2:

For obtaining a minimum authority of 0.25:

 Δp in control valve must be $\geq 0.25 \times H$

Since Δp piping + circuit = 33 + 7 = 40 ft, Δp in control valve must be \geq 13.3 ft (40/3)

Final pump head = 40 + 13.3 = 53.3 ft $\beta_{design} = 0.66$ and $\beta_{min} = 0.25$

Improved control with reduced pumping energy

Δp piping: 31 ft

Control valve sizing with Dp control:

For obtaining a design authority of 0.5 and min of 0.25:

 Δp in control valve must be $\geq 0.5 \times \Delta H$ and ≥ 0.25 of stabilized Δp

Since Δp piping + Δp circuit = 7 ft, Δp in control valve must be \geq 7 ft

Final stabilized $\Delta p = 7 + 7 + 2 = 16$ ft

 $\beta_{\text{design}} = 0.50 \text{ and } \beta_{\text{min}} = 0.44$

Final pump head = 31 + min Δp of DpC (2 ft) + 2 + 7 + 7 = **49 ft**

How does it work?

Simulation

Dp controller position

Depending on project structure, Dp control will be applied:

Bigger plant with different Dp control configurations

Find the best Dp control solution...

Find the best Dp control solution... (1)

Dp control on each control valve

Parameters:

On-off or modulating control Dp in pipes; length of branches Material cost

Find the best Dp control solution... (2)

Dp control on branches

Parameters:

On-off or modulating control Dp in pipes; length of branches Material cost

To Insure System Stability

Include in specifications:

The minimum stabilized control valve authority (shall be equal to or greater than) ≥ .25

April 2010 24

Engineering

GREAT

Solutions

- IMI PNEUMATEX
- **MI TA**
- MI HEIMEIER