An Enormous Emerging Opportunity for District Cooling Developments

John S. Andrepont, President

The Cool Solutions Company

IDEA Annual Conference Seattle, Washington - June 9, 2014

Outline

- Introduction: District Cooling (DC) Challenges
- Electric Power Dilemma & Reaction:
 - Variable elec demand + intermittent renewables
 - California Energy Storage (ES) Mandate
- DC Opportunities:
 - Customer Storage TES at existing DC systems
 - Generation Storage DC at CT power plants
 - Examples of DC at CT power plants
- Summary and Conclusions

Terminology

- CAES Compressed Air Energy Storage
- CHW Chilled Water
- CT Combustion Turbine
- DC District Cooling
- ES Energy Storage
- IOU Investor Owned Utility
- IPP Independent Power Producer
- MCF Mission Critical Facility
- PH Pumped Hydro-electric
- TES Thermal Energy Storage
- TIC Turbine Inlet Cooling

Introduction

District Cooling (DC) has big challenges:

- Needs large cooling loads
- Needs dependable long-term customers
- Often needs many customer contracts
- Typically, complex & phased development
- Capital intensive & often difficult to finance
 But what if . . . there are large DC prospects,
 each needing only 1 customer, and
 those customers had multiple similar sites?

Elec Gen Mix Serves Variable Load

2013 Peak Load Week - Generation by Fuel Type

Note - no changes to existing reserves requirements were assumed for this analysis

Wind Output Only 20% at Peak Dmnd

Value Varies: +\$2.50 to -\$0.10 / kWh

Cal PUC - Energy Storage Mandate

- 3 Calif. IOU's (PG&E, SCE, and SDG&E):
 - 1.3 GW Energy Storage (ES), 4 x 2-yr phases, all procured by 2020 & installed by 2024.
- ES applications to be in 3 areas:
 - Transmission, Distribution, and Customer ES.
- ES technologies can be:
 - Batteries, CAES, PH (<50 MW), fuel cells,
 flywheels, or <u>Thermal Energy Storage</u> (TES).

Util's can own only 50% of the ES assets!

Cal PUC - Energy Storage Mandate

		ES to be procured by IOUs (MW				<u>s (MW)</u>
<u>Utility</u>	ES Type	2014	2016	2018	2020	<u>Totals</u>
PG&E	Transmiss'n	50	65	85	110	310
	Distribution	30	40	50	65	185
	Customer	10	15	25	35	<u>85</u>
SCE	Transmiss'n	50	65	85	110	310
	Distribution	30	40	50	65	185
	Customer	10	15	25	35	<u>85</u>
SDG&E	Transmiss'n	10	15	22	33	80
	Distribution	7	10	15	23	55
	Customer	3	5	8	14	30
Total MW	All ES	200	270	365	490	1,325

Multi-hour Energy Storage Options

Type of	Devel't	Effic	Life	Unit Capital	<u>Costs</u>
ES Tech	<u>Status</u>	<u>(%)</u>	(yrs)	<u>(\$/kW)</u>	<u>(\$/kWh)</u>
P Hydro	mature	75-85	40+	1900-3800	310-380
Na-S batt's	mature	80	15	3900-4200	650-700
Lead-acid	mature	85-90	7-15	2000-3000	500-750
Adv'd batt's	demo	65-90	15-30	1500-4500	470-1125
Flywheels	demo	90	20	1950-2250	7800-9000
CAES	demo	70-80	40+	800-1200	80-150
CHW TES	mature	100+/-	40+	300*-1000	50*-150

^{*} CHW TES Cap\$ can be zero or negative (capital savings), when TES avoids cost of equiv conv'l CHW capacity!

DC Opportunity: "Customer" ES

- 1. Add TES to your existing DC systems
 - Calif. IOU pays for the storage
 - Your DC system owns & operates the TES
 - And your DC gains peak capacity / redundancy
- 2. Add "merchant" TES to others' DC systems
 - Calif. IOU pays for the storage
 - DC can be univ, med, airport, gov't, MCF, etc.
 - DC developer could own & operate the TES

And even more options for "Transmission" Storage.

DC Opportunity: "Transmission" ES

- CT power plants lose capacity in hot weather. But: Turbine Inlet Cooling (TIC) adds power (at low \$/kW). CHW TES adds more power + ES (& it saves cap\$)!
- 1. Add TES-TIC to existing IOU CT plants
 - Calif. IOU pays for (and owns) the TES
 - Engrs / contractors design / install the TES-TIC
 - DC developer could operate (not own) TES-TIC
- 2. Add "merchant" TES-TIC to IOU (or IPP) CT plts
 - Calif. IOU pays for (but does <u>not</u> own) the TES
 - Remember: IOUs cannot own >50% of the ES!
 - DC developer could own & operate TES-TIC

Electric Utility (repeat) CHW TES-TIC

4 projects by **Dominion Energy** in PA & VA, 2009-16:

1st	No.	Plant	Incre	ease			
Year	of	Power	due to TIC		Elec Shift from CHW TES		
<u>Oper</u>	<u>CTs</u>	<u>(MW)</u>	<u>(%)</u>	<u>(MW)</u>	(MWh/d)	<u>(hrs/d)</u>	<u>(MW)</u>
2009	4	1,180	13	115	87	6	14
2011	2	590	14	60	55	7	8
2014	3	1,329	9	108	162	8 to 10	18
2016	3	1,329	9	108	188	10	19
Total	12	4,428	45	391	429	6 to 10	59
Avg.	3	1,107	11	98	123	8	15

Typical for one "average" DC plant for TES-TIC: 22,000 T load; DC = 12,000 T(chillers) + 176,000 T-hrs(TES)

Electric Utility (repeat) CHW TES-TIC

2 projects by Saudi Electricity Co. in Riyadh, KSA, 2005-08:

1st	No.	Plant	Incre	ease			
Oper	of	Power	due to TIC		Elec Shift from CHW TES		
<u>Year</u>	<u>CTs</u>	<u>(MW)</u>	<u>(%)</u>	<u>(MW)</u>	(MWh/d)	(hrs/d)	<u>(MW)</u>
2005	10	750	30	180	288	6	48
2008	40	3,000	30	720	885	5	177
Total	50	3,750	30	900	1,173	5 to 6	225
Avg.	25	1,875	30	450	587	5	113

Typical for one "average" DC plant for TES-TIC: 90,000 T load; DC = 25,000 T(chillers) + 450,000 T-hrs(TES)

CHW TES-TIC in Saudi Arabia (2005)

750 MW utility power plant (10 x 75 MW CTs). But at 122 F, output derates to only 600 MW. Wanted 30% more power; could just add 3 more CTs.

If use TIC w/ 31,000 T chillers, it nets 132 MW, at only \$435/kW! But power most valued 6 hrs/d; they used TIC w/ CHW TES, 11,000 T chlrs + 193,000 T-hrs, nets 180 MW, at only \$250/kW!! Utility uses a DC system for TIC; later, another for 40 more CTs!

Summary and Conclusions

- Near-Term DC opportunities in California:
 Large, single-customer DC, with repeat potential.

 Funding from Calif IOUs (PG&E, SCE, SDG&E).
 - 1. Add TES to your existing DC systems
 - 2. Add "merchant" TES at others' DC systems
 - 3. Add TES-TIC at utility (IOU) CT power plants
 - 4. Add "merchant" TES-TIC at IOU or IPP CTs
- Similar prospects should develop elsewhere.

 A great business opportunity for IDEA members:

 DC developers/owners, equip suppliers, eng'rs.

Questions / Discussion?

Or for a copy of this presentation, contact:

John S. Andrepont

The Cool Solutions Company

CoolSolutionsCo@aol.com

tel: 630-353-9690

