

DRY SORBENT INJECTION WITH HYDRATED LIME FOR ACID GAS CONTROL TO ACHIEVE REGULATORY COMPLIANCE WHILE BURNING VARIOUS COALS

Campus Energy 2016 Austin, Texas February 8-12, 2016 © 2016 Lhoist North America

Greg Filippelli, PE Flue Gas Treatment Lhoist North America

AGENDA

Introduction

Proven, Versatile, Mature & Attractive Technology

Balance Of Plant Impacts & Improvement

Cost Effectiveness of Advanced Hydrate Limes

Applications and Case Studies

Discussion/Questions

© 2016 Lhoist North America

Introduction

© 2016 Lhoist North America

Introduction

> Dry Sorbent Injection (DSI) is a technology of choice...

- > Low CapEx solution
- > Easy retrofit small installed foot print
- > Flexible and customizable

> ...that continues to evolve as an economical solution...

- > Improved equipment design based on years of operating experience
- > Enhanced sorbents provide solutions for new applications and better cost to old ones
- > Improved mixing technologies optimize operating costs/performance

> ...providing solution for new and existing customers.

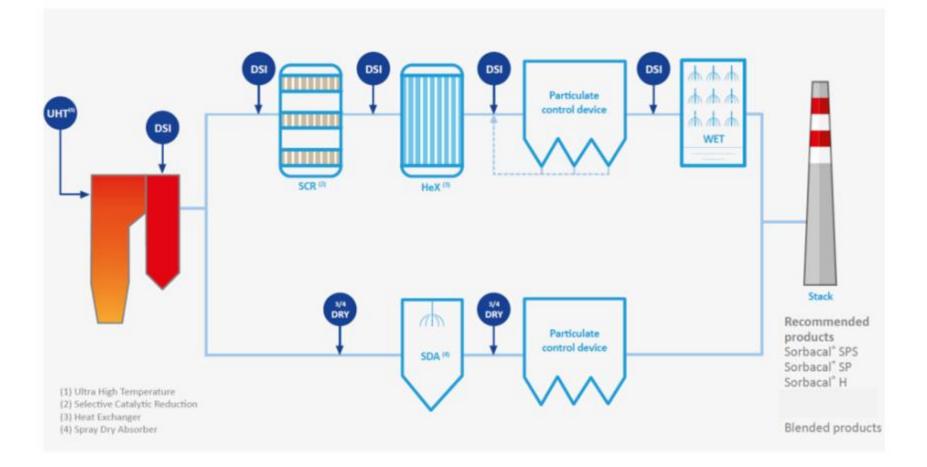
- > Regulatory compliance
- > High removal performance capability of enhanced hydrated limes
- > Likely the most economical solution for short life-cycle cost analysis
- > Low by-product/CCR concerns/costs

Proven, Versatile, Mature & Attractive

© 2016 Lhoist North America

Proven Technology

> Hundreds of DSI systems installed in the United States


- > Widely installed in the coal-fired Utility Sector
- > Growing penetration in the Industrial Sector
- > Considerable interest from the Industrial Boiler Sector
 - > IB MACT applications
 - > Comfortably achieving compliance levels

> Versatility

- > Broad application: CFB, PC-fired, Stoker
- > 20MW to 800MW applications
- > Control Hydrogen Chloride (HCl) ...plus, SO₃ HF and SO₂

Versatile Technology

Mature Technology

> Pioneered in the late 1980's and early 1990s

- > DOE National Energy Technology Laboratory (NETL) began studying "DSI with calcium sorbents"
- > Response to the compliance challenge from CAAA of 1990
- > Duct injection of hydrated lime for SO₂ control
- > First systems were crude, material-handling approaches to a chemical application problem

> Second-Gen Systems

- > Early 2000's Hydrated lime for SO₃ control
 - > e.g., TVA Widows Creek
 - Corrosion control, plume mitigation, acid deposition, enhanced PM control Dilute-phase conveyance with a more sophisticated destitution

> Current State of the Art

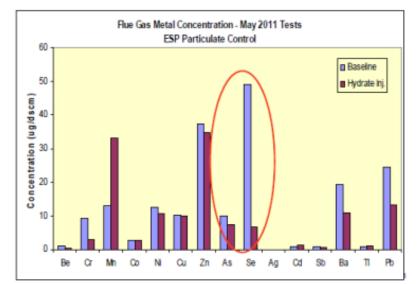
Air Island

Optimized dilute-phase conveyance Dehumidifiers - Aftercoolers

Material Storage Island

Advanced multi-stage LIW Precise feeds Feed forward-feed back logic Flow enhancing technologies

Delivery and Distribution


Engineered manifolds Modelled lance placement Installed diagnostics In-duct Static Mixers (low dP)

Attractive Technology

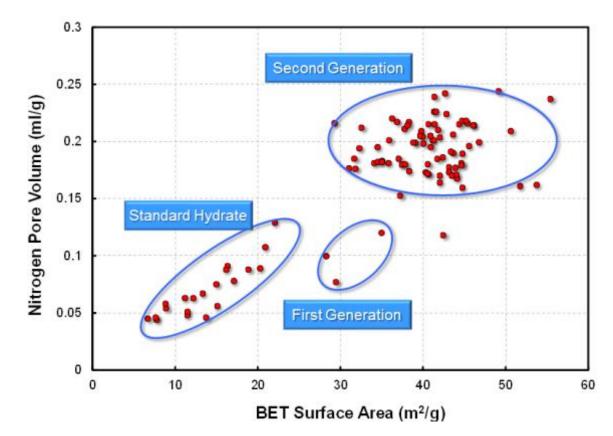
- > Low Capital Cost
- > Small Footprint

> Broad Co-Benefits

- > Heat rate reduction through lower Air Heater (AH) deposition
- > Lower AH outlet temps facilitate better electrostatic precipitator (ESP) operations
- > Vapor-phase trace metal collection
- > Greater fuel flexibility
- > Enhance Mercury (Hg) capture effectiveness

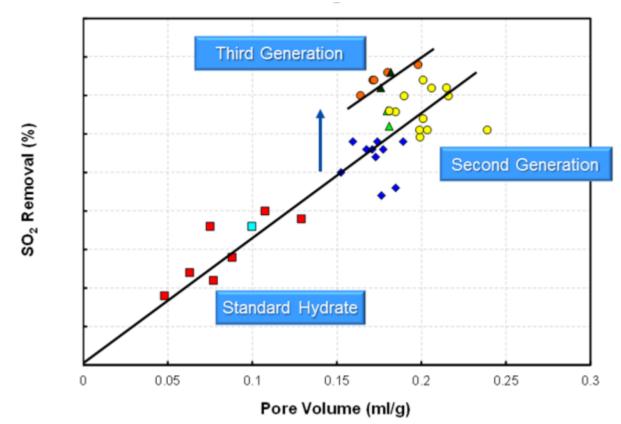
Enhanced Hydrated Lime

- > Hydrate lime suppliers have pursued numerous products enhancement to improve performance
 - > Improved reactivity


- > Physical modification
- > Increased chemical utilization
- > Surface additives

Sorbent	Standard Hydrated Lime	Sorbacal® H	Sorbacal® SP	Sorbacal® SPS	Units
Figure		$\begin{smallmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{smallmatrix}$			-
Typical Available Ca(OH) ₂	92 – 95	93	93	93	NATION %
Typical Surface Area	14 – 18	> 20	~40	~40	m²/g
Typical Pore Volume	~0.07	0.08	~0.20	~0.20	cm ³ /g

Reactivity Property Relationships


> Surface Area and Pore Volume Product Development

Evolution of High Performance Products

> Surface Area and Pore Volume Product Development

Balance of Plant Impact/Improvements

Balance of Plant

> Reduced O&M on downstream equipment

- > Reduced corrosion
- > Reduced fouling

<u>Protect Equipment and Ductwork</u> - corrosion protection <u>Maintain AH cleanliness</u> - lower dP thru condensable removal <u>Improved Operating Costs</u> – heat rate improvement

Lower heat rate means less coal burned and lower CO_2 emissions 1 lb coal ~ 2.5 lb of CO_2 emitted

Improved Cost Effectiveness with Enhanced Hydrated Limes

Cost Effectiveness

- Greater sorbent efficacy means less sorbent consumed > for equal performance
 - > Better \$USD/lb of acid gas removed > Lower stoichiometric ratios
 - > Higher chemical utilizations

- > Lower mass injection ratios

Lower mass loading means >

- > Less wear and tear on particulate control devices
- Lower ash/CCR volumes to dispose of or manage >
- Lower truck/delivery traffic >
- > Lower incidences of system maintenance

Cost Effectiveness

- Greater sorbent efficacy means less sorbent consumed > for equal performance
 - Better \$USD/lb of acid gas removed > Lower NSRs >
 - > Higher chemical utilizations
 > Lower mass injection ratios

Hydrated Lime is a Value Choice not a Price Decision

Lower mass loading means >

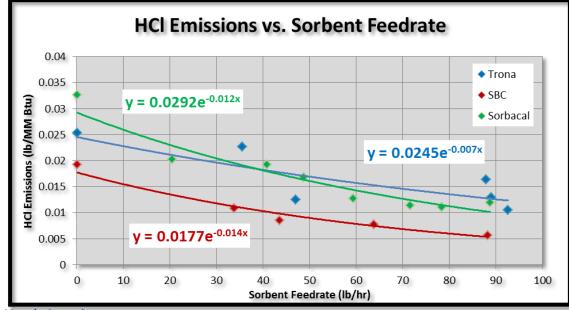
- > Less wear and tear on particulate control devices
- Lower ash/CCR volumes to dispose of or manage >
- Lower truck/delivery traffic >
- Lower incidences of system maintenance >

Cost Effectiveness > A recent University procurement example...

Sorbent	Enhanced Hydrate	Standard Hydrate		Delivered Cost Based Comparison Enhanced Hydrate vs. Standard FGT Grade Hydrate		
	Avg Performance	Base		90%		
Delivered Price	\$246.05	\$193.00	per Ton			
Improvement in				80%		
Performance	40%	0%		2 70%		
Usage	450	750	Tons	0% 60% 50%		
Operating Hours	5,760	5,760	Hours			
Average Usage	0.078	0.130	Tons/Hour	50%		
Average Inlet HCI	40	40	ppmv	40%		
	18.3	18.3	lb/hr	¹ 2 30%		
Target HCI	10	10	ppmv			
Target HCI Removal	75%	75%		20% — Enhanced Hydrate (Aug Performance)		
HCI Removed	13.7	13.7	lb/hr	10%Target HCl Removal		
Delivered Sorbent Cost	\$19.22	\$25.13	per Hour	0%		
Delivered Sorbent Cost per lb HCl Removed	\$1.40	\$1.83	per lb HCl Removed	\$1.10 \$1.30 \$1.50 \$1.70 \$1.90 \$2.10 \$2.30 \$2.50 \$ per lb HCl Removed		

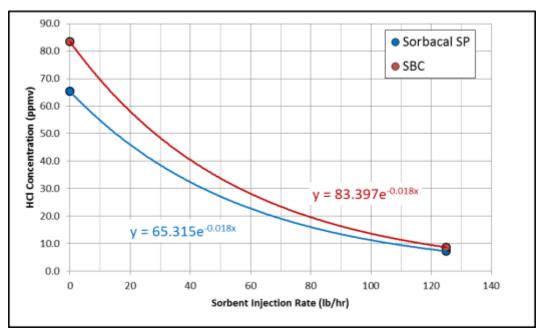
Hydrated Lime is a Value Choice not a Price Decision

© 2016 Lhoist North America

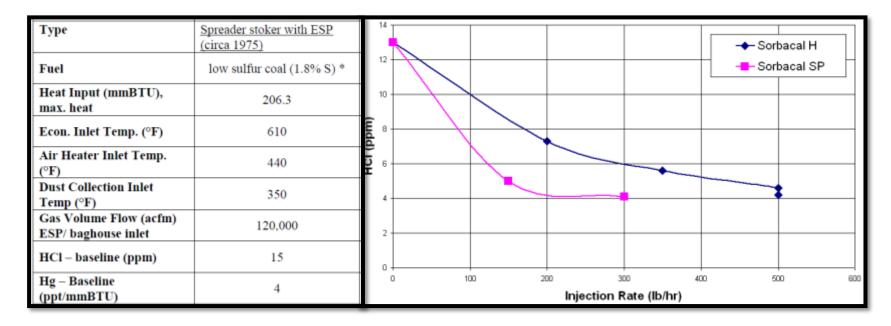

Case Studies

© 2016 Lhoist North America

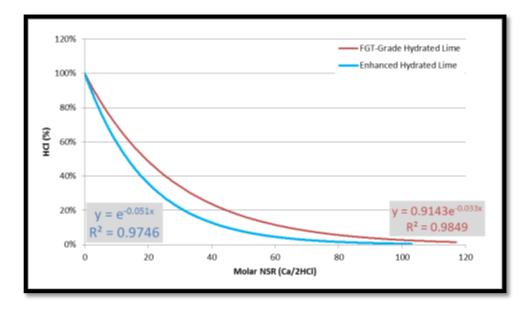
> Biomass-fired boiler – HCl control study


- > Three sorbents were tested: enhanced hydrate, trona and SBC
- > Injection at the BHF inlet: 350-375F
- > Enhanced hydrate was within 15% of the relative performance of SBC & twice as effective as trona

> CFB boiler – HCl control study


- > Enhanced hydrate and SBC were tested
- > Injection at the BHF inlet: 350-375F
- > Enhanced hydrate performed similarly to SBC

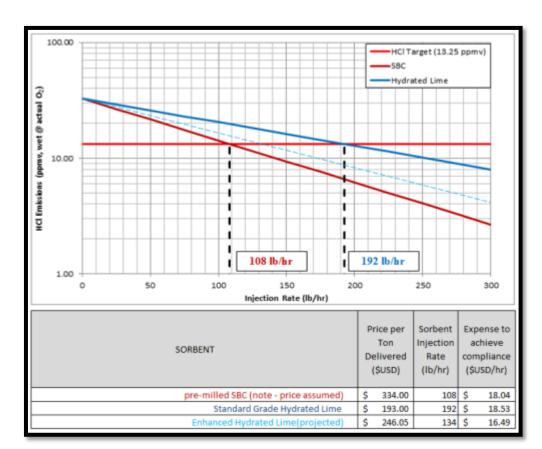
> Stoker boiler – HCl control study


- > Two enhanced hydrates were tested
- > Injection immediately upstream of the AH: 440F
- > Enhanced hydrate performed similarly to SBC

> Stoker boiler – HCl control study

- > Enhanced hydrate and FGT-Grade Hydrate were evaluated
- > Injection at the AH outlet/RAFF inlet
- > Enhanced hydrate performed roughly 30% better than std hydrate

Gas temp = 540°F H2O in wet gas, % by wt. = 11.75% SO2-to-HCl ratio (lb/lb) = 92.6



Case Study #5 > PC Wall-fired boiler – HCl control study

> Standard hydrate and pre-milled SBC were tested

 > Injection upstream of the fabric filter post air pre-heater @ 360 F

> Substantial costdifferential between the sorbents.

Summary

- > Dry Sorbent Injection (DSI) is a broadly implemented acid gas control technology
- > The higher efficacy of enhanced hydrated limes means:
 - > Reduced O&M due to reduced corrosion and fouling
 - > Lower ash/CCR generation rates
 - > Improved operating cost
 - > Greater assurance of obtaining compliance goals
- > Enhanced hydrated lime is a for cost-effective choice for acid gas control

Hydrated Lime is a Value Choice not a Price Decision

Discussion/Questions?

Greg Filippelli, P.E. Lhoist North America 240.372.5734 greg.filippelli@lhoist.com www.lhoist.com