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Why seasonal storage?

« Steep reductions in GHG are not achievable without utilizing waste heat and low
temperature renewable energy resources.

 Avalilablility of zero-carbon heating resources is greater in summer, when heat

demand is low:
« Solar
* Reject heat from chiller systems.

 Availability of zero-carbon cooling resources is greatest when cooling demand is

low:
e Cold winter air




Why seasonal storage?

 Air conditioning using naturally cold water can be optimized
with seasonal thermal energy storage

* For example, integration of Deep Water Cooling and
Seasonal Aquifer Storage In Sollentuna, Sweden




How seasonal storage?




Schematic of an Earth-Coupled
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ATES Based District Heating & Cooling

The United States
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Seasonal Thermal Energy Storage
Feasibility Study Components

» Hydrogeologic Evaluation
— Aquifer physical and hydraulic properties
— Aquifer geochemical properties
* Engineering Evaluation
— Cooling/Heating configuration evaluated
— Conceptual design
— Calculate OPEX and emissions reductions
* Financial Evaluation

— EStimate CAPEX -
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ATES Hydrogeologic Evaluation

Chillicothe, OH
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ATES Hydrogeologic Evaluation
Columbus, OH
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ATES Test Drilling Program
Chillicothe, OH

ow-2
TW-2

MLW=2

(1)

Approximate Elevation
Depth Below Ground Surface (ft)

1,000 1,500
Horizontal Scale (ft)

Sard & Gravel

Shele Bedrock
GROUNDWATER
SEPTEMBER 2014




ATES Test Drilling Program
Columbus, OH
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ATES Hydrogeologic Evaluation

Aquifer Hydraulic Properties

Parameter Chillicothe
Aquifer Saturated Thickness 95 ft (29m)
Aquifer depth 120+ ft (37+m) bgs

Aquifer hydraulic conductivity 0.13-0.16 cm/s

Aquifer transmissivity 36,000 ft?/day
(3,300 m?/day)
Hydraulic Gradient 1.3x103

Aquifer storativity 0.001

Columbus

30 ft (6-21m)
100 ft (34m) bgs
0.2-0.5cm/s

17,000 - 43,000 ft>/day
(53 - 1,800 m?/day)
5x10+4

0.001




ATES Conceptual Design
Chillicothe, OH




ATES Conceptual Design
Columbus, OH
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ATES Engineering Evaluation

Status Quo and Implementation Scenarios

VA Chillicothe

Status quo:

Biomass plant with steam and electricity generation as per current
New chiller plant with cooling towers for Bldg. 31
Air cooled chillers at all other buildings as per current

ATES Implementation Scenarios

Cooling only, Big Circle, winter charging with dry cooler

As above, but adding Small Loop

Cooling Big Circle and Heating Bldg. 31, gas engine heat pump
(plus supplemental winter charging with dry cooler)




ATES Engineering Evaluation

CHP Integration

VA Chillicothe has biomass CHP

VA Columbus has completed CHP design

*EXisting design wastes most low-grade heat from CHP.
*ATES system would supply low heat while CHP would reject
about the same amount!




ATES Engineering Evaluation

Groundwater System Design Assumptions
VAMC Columbus, OH

Cooling and Heating Options Value
Well Depth 110 feet
Max yield (per well) 440 gpm
Number of Warm Wells 2
Number of Cold Wells 3

Maximum Yield Well Water System 880 gpm

Cold well groundwater charging temperature 41°F

Cold well groundwater abstraction temperature 41 °F = 48 °F




ATES Heating & Cooling Conceptual Design
Columbus, OH
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VAMC Columbus, OH ATES Capital Costs

Building System

District Distribution System

Energy Transfer Station

m ' Well System

CAPEX(x 1,000)
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ATES Reqgulatory Evaluation

« Underground Injection Control (UIC) program administered by
the Ohio EPA. ATES wells are Class V wells requiring permits
for construction and operation per OAC Rule 37/45-34-

12 and OAC Rule 3745-34-16.

* Any open-loop system with the capacity to withdraw 0.1 MGD
or greater must register with the ODNR-DSWR'’s Water



http://epa.ohio.gov/portals/28/documents/rules/Final/3745-34-12_effective_04-23-09.pdf
http://epa.ohio.gov/portals/28/documents/rules/Final/3745-34-12_effective_04-23-09.pdf
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ATES is technically feasible at both VA hospital facilities in Ohio from the perspectives of
climate, hydrogeology, geochemistry, regulatory and facilities integration.

The financial result was most favorable for ATES heating & cooling without CHP.
Gas-engine heat pumps in ATES system man be a competitive alternative to CHP.

The electricity cost inflation rate used in our Life-Cycle Cost Analysis (<1%) is far below the
rate calculated from actual 2012-2015 cost data (6%). The financial picture improves
significantly when realistic escalation rates are used.

The financial feasibility of ATES at other US locations will be improved where site-specific
conditions differ from the VA Hospitals in Ohio:
— Low energy prices in Ohio reduce OPEX savings;
— We are comparing ATES OPEX savings to new, efficient CHP and chiller plants under the
status quo scenarios; and
— The Chillicothe ATES system cost is burdened by the long pipe runs required to connect
the well fields to the new ETS, and from there to a new CHW district cooling system.

ATES will be most cost effective in new construction where building systems retrofit costs are
not incurred.

Other than localized thermal impacts in the aquifer and temporary construction impacts, the
ATES projects will have minimal adverse environmental impact.



Recommendations

» Evaluate ATES for cooling and/or heating
modes where:

— Large heating and cooling loads, and
— Seasonably variable climate, and
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Knowing Is not enough; we must apply.
Willing Is not enough; we must do.




