The study on the effect of each District Heating substation's return temperature on the CHP electricity production opportunity cost

IDEA 2017 – Sustaining Our Success 108th IDEA Annual Conference & Trade Show

June 26-29, Scottsdale, Arizona

Jong Jun Lee, Shin Young Im Korea District Heating Corporation

Introduction

- System modeling
- Results

KOREA DISTRICT HEATING CORP.

Conclusion

Introduction

Definition of CHP(Combined Heat & Power)

One of the Power generation system which can generate electricity and heat

Source : http://www.dynamicenergyusa.com/solutions/combined-heat-power/

CHP System is very valuable system for reducing Energy consumptions

Combined Heat & Power(CHP) System is one of the solution for using energy more efficiently

High efficiency and low emissions comparing to conventional Electricity and heat generation

CHP Can Avoid 60 Percent of the Potential Growth in Carbon Dioxide Emissions Between 2006 and 2030

- Catalog of CHP Technologies, U.S. Environmental protection Agency CHP Partnership, 2008
- A decade of progress Combined Heat and Power, U.S. Department of Energy, 2009

More efficient operating of CHP can reducing much more energy consumptions as possible

CHP System performance variations by DH return temperature variations(System efficiency and Back Pressure variations)

Supply Temperature and Heat rate variation vs. Returning Temperature

System Power and Efficiency variation vs. Returning Temperature

CHP Performance are varied by District Heat Return Temperature variations

Introduction Research Background

Condensing Turbine & Back Pressure Turbine

Back pressure type

- Don't required condenser(Cost 1)
- Single(Double) pressure system
- Narrow range Control Heat & Power ratio
- More easy control system than Condenser type
- Power generation can varied when the return temp. are varied

Mode Operations

- Benefits of Mode Operations
 - Wide range control of Heat-Electricity ratio
 - Possible to respond for seasoning heat/electricity demands
 - Possible to maximize revenue
 - Securing Reliability of Heat & Power generation

Introduction Research Background

problems have been happened in customer side
KDHC supplying heat to 1.3million households and 2,100 buildings (13,000 substations)

● User return temperature operation status (for 508 users in KDHC A branch, over 55 ℃ return temperature)

Month	1	2	3	4	5	6	7	8	9	10	11	12
%	16.8	11.4	<i>12</i> .8	11.9	11.4	12.4	12.6	13.3	11.0	9.8	9.9	11.4

 Jan 2015 Daily user return temperature distribution (A branch, 508 users)

Analysis of the change of heat source performance and opportunity cost according to user return temperature

- Step1 : Analyzing on the effect that return temperature of each substation influence to total return temperature
 - ➤ Mathematically summarize the effect on the total return temperature rise for the reference return temperature(55 °C)

Step2 : Estimate cost of power generation opportunity loss in heat source with total return temperature change

 Commercial CHP Plant simulation Using commercial simulation program(GateCycle)

Step3 : Analysis of effect of return temperature of individual users on cost of lost electricity production opportunity of CHP

- Utilizing the operating data of A branch of Korea District Heating Corporation
- 508 Substations (additional cost analysis of 115 users with a return temperature of 55 °C or higher)

System modeling

System Modeling Conceptual diagram of total return temperature calculation

KOREA DISTRICT HEATING CORP.

System Modeling Derived equations of total return temperature calculation

Basic Equation

Heat production: Q = cmΔT
c: specific heat of DH supply water
m: mass of DH supply water
ΔT=(T_s-T_R): Temperature difference between supply and return

Assumptions

$$Q-Q_{loss}=Q'=\sum_{i=1}^n Q_i$$

- Q ', excluding Qloss from Q, is equal to the sum of the Qi which are used by the individual user.
- Q_{loss} is not related to the result when analyzing the effect of individual user's return temperature on total return temperature.

n

• The derived equation #1

$$Q = cM(T_{s} - T_{R}) = cm_{1}(T_{s1} - T_{r1}) + \dots + cm_{n}(T_{sn} - T_{rn}) \quad M = \sum_{i=1}^{n} m_{i}$$
$$= c\sum_{i=1}^{n} m_{i}(T_{si} - T_{ri})$$
$$T_{R} = \frac{c\sum_{i=1}^{n} m_{i}(T_{si} - T_{ri})}{M} \qquad T_{si}: i-th \ substation \ Supply \ temperature$$
$$T_{ri}: i-th \ substation \ return \ temperature$$

System Modeling Derived equations of total return temperature calculation

● The derived equations #2 when the return temperature of the i-th user is changed to 55 °C

$$Q_{i} = cm_{i}(T_{si} - T_{ri}) = cm_{55i}(T_{si} - 55) \qquad \therefore m_{55i} = \frac{m_{i}(T_{si} - T_{ri})}{c(T_{si} - 55)} = \frac{Q_{i}}{c(T_{si} - 55)}$$

$$cM_{55i}(T_{s} - T_{Ri}) = cm_{1}(T_{s1} - T_{r1}) + \dots + \frac{cQ_{i}}{c(T_{si} - 55)}(T_{si} - 55) + \dots + cm_{n}(T_{s} - T_{rn})$$

$$(T_{s} - T_{Ri}) = \frac{m_{1}(T_{s1} - T_{r1})}{M_{55i}} + \dots + \frac{Q_{i}}{cM_{55i}} + \dots + \frac{m_{n}(T_{sn} - T_{rn})}{M_{55i}}$$

$$-m_{1}T_{s1} + \dots + m_{i-1}T_{si-1} + m_{i+1}T_{si+1} + \dots + m_{n}T_{sn} + Q_{i}$$

$$= \frac{m_{1}T_{s1} + \dots + m_{i-1}T_{si-1} + m_{i+1}T_{si+1} + \dots + m_{n}T_{sn}}{M_{55i}} + \frac{Q_{i}}{cM_{55i}}$$

$$-\frac{m_{1}T_{r1} + \dots + m_{i-1}T_{ri-1} + m_{i+1}T_{ri+1} + \dots + m_{n}T_{rn}}{M_{55i}}$$

$$\therefore T_{Ri}^{`} = T_{S} - \frac{\sum_{i=1}^{n} m_{i}(T_{si} - T_{ri}) - m_{i}(T_{si} - T_{ri})}{M_{55i}} + \frac{Q_{i}}{cM_{55i}}$$
The T_{Ri} value is affected by the return temperature of the rest users.

System Modeling Derived equations of total return temperature calculation

• The modified derived equations #2

$$\begin{split} T'_{R55(i)} &= T_{S} - \frac{Q'}{c(\sum_{i=1}^{n} m_{55(i)} - m_{55(i)} + m_{i})} - 55 \\ &= T_{S} - \frac{Q'}{c(\sum_{i=1}^{n} \frac{Q_{i}}{c \cdot (T_{si} - 55)} - \frac{Q_{i}}{c \cdot (T_{si} - 55)} + m_{i})} - 55 \end{split}$$

> When the return temperature of the i-th user is higher than 55 \mathcal{C} ,

- ✓ the return temperature of other users is adjusted to 55 °C to eliminate the influence of other machine rooms(Fixed supply heat and temperature, flow rate are adjusted)
- ✓ We can evaluating Only the i-th user's return temperature impact.
- ✓ It can minimize the impact between the mechanical room, and It is unaffected by ever-changing supply / return temperatures

 \wedge

Results Raw data

• The Raw data of substations

		Su	Using heat by		
Date	Supply Temp.	Return Temp.	Flow Rate (ton)	Supply heat (Gcal)	Customer (Gcal)
2015-01-01 📣	107	50.6 🚽	234,314 🗸	13,215 🚽	13,215 🚽
2015-01-02 📣	107	50.0 🚽	222,756 🖵	12,697 斗	12,697 🚽
2015-01-03 🜙	107 🎝	48.8 🜙	207,869 🖵	12,108 斗	12,108 🚽
2015-01-04 🜙	107 🎝	47.4 🜙	180,811 🜙	10,772 🜙	10,772 🚽
2015-01-05 📣	107	46.7 🚽	167,884 斗	10,130 🚽	10,130 🚽
2015-01-06 🜙	107 🎝	48.2 🜙	189,776 🜙	11,151 斗	11,151 🚽
2015-01-07 🜙	107 🜙	49.5 🜙	211,651 🜙	12,180 斗	12,180 🚽
2015-01-08 📣	107	49.4 🚽	211,094 🚽	12,150 🚽	12,117 🚽
2015-01-09 📣	107	48.6 🚽	198,259 🚽	11,582 斗	11,582 🚽
نے ا	لہ ا	لہ ا	لہ ا	لہ ا	نے ا
2015-01-24 🜙	107 🎝	46.7 🜙	155,229 🜙	9,356 🖵	10,314 🚽
2015-01-25 斗	107 🚽	46.8 🚽	162,003 斗	9,756 🚽	9,756 🚽
2015-01-26 📣	107	46.3 🚽	152,310 🚽	9,243 🚽	9,243 🚽
2015-01-27 🜙	107 🜙	47.7 🜙	179,260 🜙	10,637 斗	10,637 🜙
2015-01-28 🖵	107 🎝	48.7 🜙	194,755	11,357 🚽	11,357 🚽 🖕
2015-01-29 📣	107	47.9 🎝	185,850 斗	10,975 斗	10,975 🚽
2015-01-30 📣	107	48.5 🖵	192,411	11,264 斗	11,264 🚽
2015-01-31 📣	107 🎝	49.2 🗸	204,245	11,814 斗	11,814 🜙

<The Operating data of substations of A Branch at January 2015>

Results Raw data

• The Raw data distributions

Return Temperature distribution(°C)

<User return temperature distribution in January 2015>

Analysis on the effect that return temperature of each substation influence to total return temperature

# of sub.	Heat	Flow rate (m³)	Supply Temp.	Return Temp.	Flow rate when the return temp. adjusted to $55 {}^{\circ}$	Estimated total return temp. when only the i- th user send over than 55 °C	Total Temperature difference between real and estimated
43⊷	39.4+	851.2+	107+	60.72	757.69	55.0191	0.0191
50⊷	44+	882.0+	107+	57.12	846.15	55.0074	0.0074
55⊷	15.4+	301.6+	107+	55.94	296.15	55.0011	0.0011
56⊷	14.3+	295.2 +	107+	58.56	275.00	55.0041	0.0041
57-	31.6+	618.0+	107+	55.87	607.69	55.0021	0.0021
694	64+	1268.2 +	107+	56.54	1,230.77	55.0077	0.0077
79⊷	31+	612.6 +	107+	56.40	596.15	55.0034	0.0034
824	21.8+	436.2+	107+	57.02	419.23	55.0035	0.0035
84⊷	13.5+	411.9+	107+	74.23	259.62	55.0311	0.0311
106+	17.2+	592.7 +	107+	77.98	330.77	55.0536	0.0536
107-	8.8+	175.7 +	107+	56.93	169.23	55.0013	0.0013
113-	29.3+	614.2+	107+	59.30	563.46	55.0104	0.0104
120-	6.2+	126.3 +	107+	57.92	119.23	55.0015	0.0015
123+	6.2+	149.8+	107+	65.63	119.23	55.0063	0.0063
124+	0.98+	25.8+	107+	69.16	18.85	55.0014	0.0014
125~	1.17+	26.5+	107+	62.92	22.50	55.0008	0.0008
129+	32⊷	642.5+	107+	57.20+	615.38+	55.0056+	0.0056+
130+	33.3+	656.3 +	107+	56.26+	640.38+	55.0033+	0.0033+
144+	8.5⊷	179.8+	107+	59.73 ⊷	163.46+	55.0033+	0.0033+
145~	22.9+	494.3 +	107+	60.68+	440.38+	55.0110+	0.0110+
148⊷	28+	539.9+	107+	55.14+	538.46+	55.0003+	0.0003+
149⊷	29.1+	566.3 +	107+	55.62+	559.62+	55.0014+	0.0014+
150-	112.7+	2254.2 +	107+	57.01+	2,167.31+	55.0178+	0.0178+

It looks very small difference but each substation individually influencing to total return temperature.

Results Influence of each substation to the heat source

	Units			Simulation Results	5	
Return Temp	C	45	50	55 (Reference)	60	65
⊿Return Temperature	°C	-10	-5	0	5	10
<i>∆Power</i> Generation	kW	-983.300	-493.940	0	498.890	1,000.810
∆Pump required work	kW	-136.889	-74.4783	0	90.612	203.5501
additional loss(total)	kWh	-1,120.19	-568.418	0	589.502	1,204.360
additional loss/day	kWh×day	-26,884	-13,642	0	14,148	28,904
Additional price/day	(80won /kwh)	-2,150,76	-1,091,36	0	1,131,844	2,312,371
Additional price/month	(80won /kwh)	-64,522,881	-32,740,894	-	33,955,315	69,371,142

For more information on the effect of return temperature on heat source, see the 107th IDEA Conference Material

Results Analysis of heat source power production opportunity cost

< Variation of power generation loss according to return temperature change>

Results Analysis of each substation' additional cost by return temperature

-	KOREA	DISTRICT	HEATING	CORP.
---	-------	----------	---------	-------

# of sub.	Average temp. difference(°C)	Opportunity loss cost(Won)	Basic cost(Won)	Increasing Rate(%)
490₊	0.3034	2,099,600	1,652,906	127.02%
475.↓	0.1988	1,376,042	7,421,726	18.54%
472↓	0.1675	1,158,928	12,393,171 🗸	9.35%
237	0.0672	464,791	6,329,606	7.34%
478₊	0.0474	327,883	5,609,472	5.85%
106.	0.0368	254,221	1,183,968	21.47%
84	0.0237	163,503	1,121,816	14.57%
366₊	0.0166	114,507	2,562,680	4.47%
388₊	0.0152	105,084	1,521,193	6.91%
266₊	0.0131	90,231	1,422,974	6.34%
150.	0.0114	78,748	5,149,243	1.53%
297.	0.0106	73,055	2,725,465	2.68%
274.	0.0101	70,147	933,067	7.52%
175.	0.0101	69,494	4,013,316	1.73%
471.↓	0.0100	68,929	921,926	7.48%
489₊	0.0097	67,397	1,509,539	4.46%

< Opportunity loss cost of each substations >

Results Analysis of each substation' additional cost by return temperature

- If all substations sending return temp. as reference
 - > \$330/day savings in heat source
 - About \$6,600/month opportunity loss cost can be eliminated (considering 20 working day)
 - About \$79,200/year opportunity loss cost can be eliminated
 - Considering 18 branches \$1.4million/year can be saved
 - It is same as 8,400ton/year
 CO₂ reduction effect

temperature and reference temperature(°C)

Conclusion

During this research,

- Analyzed on the effect that return temperature of each substation influence to total return temperature
- Estimated Influence of each substation to the heat source
- > Analyzed CHP's power production opportunity cost
- Analyzed each substation's additional cost by return temperature variations
- If all users are good user(means that every user send return temperature as reference temperature)
 - \$330/day = \$6,600/month = \$79,200/year are saved (on each branch)

\$1.4million/year = 8,400ton/year CO₂ reduction (Considering 18 branches)

Thank You for Your Attention! Any Questions?

KDHC Research & Training Institute Senior Researcher Jong Jun Lee (Ph. D)

E-mail	:	leejj1023@kdhc.co.kr
Office	:	+82-31-8014-9628
Cell	:	+82-10-4844-7247